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Abstract

Vehicle re-identification and anomaly detection are use-

ful tools in traffic analytics applications. Vehicle re-

identification is particularly challenging due to variations

in viewpoint, illumination and occlusion. Moreover, the re-

ality of multiple vehicles having the same make and model

hinders the design of traditional deep network-based solu-

tions. In this work, we leverage an attention-based model

which learns to focus on different parts of a vehicle by con-

ditioning the feature maps on visible key-points. We use

triplet embedding to reduce the dimensionality of the fea-

tures obtained from the ensemble of networks trained us-

ing different datasets. To address the problem of anomaly

detection, we design an unsupervised algorithm to detect

and localize anomalies in traffic scenes. To handle mov-

ing cameras, we use the results obtained from tracking to

generate anomaly proposals which are then filtered in suc-

cessive steps. We show the effectiveness of our method on

the Nvidia AI City vehicle re-identification dataset, where

we obtain mean Average Precision (mAP) score of 60.78%

placing us at the 8th position out of 84 participating teams.

In addition, we achieved the S3 score of 22.07% for vehicle

anomaly detection.

1. Introduction

In the age of automation, there is a great need for auto-

matic vehicle identification. In addition, it is also important

to detect anomalous situations, such as stalled vehicles so

that road side assistance can be dispatched immediately in

an automated manner. Tasks such as re-identification of ve-

hicles and detection of anomalous vehicles are important

tools in traffic analysis for smart cities. In this work, we

present a deep learning-based supervised method for vehi-

cle re-identification and an unsupervised method for detect-

ing anomalous vehicles.

Vehicle re-identification refers to the task of recognizing
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Figure 1: Successful retrieval by the proposed method for

a probe image from CityFlow-ReID test data. All returned

images appear to have the same identity as the probe.

Figure 2: Successful detection of an anomaly using our pro-

posed approach

vehicles across different cameras placed in different loca-

tions and captured at different times. In an urban scene, this

presents a great challenge as there can be a large number

of vehicles having the same color, make and model. Fur-

thermore, images are taken from different viewpoints which

necessitates that systems be robust to variations in orienta-

tion. Our proposed method conditions the extracted features

on the orientation of the vehicle through the localization
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of a vehicle’s key-points. To reduce the dimensionality of

the extracted features, we also use triplet probabilistic em-

bedding (TPE) proposed by Sankaranarayanan et al. [19],

which increases the speed of search and retrieval in a large

gallery. Another aspect of the presented work is the use of

an ensemble of networks which improves performance as

different models trained with different datasets capture di-

verse discriminative features.

Anomalous vehicles are usually stalled for a longer pe-

riod of time as compared to other vehicles in the scene.

While many existing works make use of background sub-

traction as a method for isolating stalled vehicles, we use

the results obtained from a vehicle tracker. This is done in

order to handle the unstabilized videos acquired by moving

cameras and dynamic scenes. The proposed algorithm first

identifies vehicles which are on the street by creating a road

mask. Next the vehicles on the periphery of the roads are

analyzed by considering the vehicles around it in an adap-

tive window size. It is noteworthy to mention that we do

not collect any labels and the proposed algorithm does not

train any new neural networks. We only use a pre-trained

Mask RCNN [4] for object detection, and the general ap-

pearance model from AAVER [6]. We call this method

Context Aware Vehicle Anomaly Detection. With the scores

obtained from the evaluation server we observe that the pro-

posed method is able to achieve an F1 score of 57.14%.

2. Related Work

Since there exist significant intra and inter-class appear-

ance variations (i.e., pose, color, design, etc.) for differ-

ent vehicles, learning an effective and discriminative fea-

ture representation is the key challenge for the Vehicle ReID

task. We briefly discuss some recent relevant works in this

section.

Different large scale datasets have been published in re-

cent years including datasets for vehicle model classifica-

tion and re-identification. Some of these datasets include

CompCars by Yang et al. [29] for vehicle classification,

VeRi [8, 9, 11] and Vehicle-ID by Liu et al. [10, 11] for

vehicle re-identification. However, in comparison to Nvidia

AICity dataset [24], the above datasets are relatively less

challenging as the images contain little orientation variation

and almost no occlusion.

In recent years, vehicle re-identification has gained mo-

mentum and significant progress has been made. Whereas

Tang et al. [23] claimed the traditional hand-crafted features

are complementary to deep features and proposed to fuse

both features, Cui et al. [2] fused the features from various

deep networks trained with different tasks and architectures.

Concurrently, in [10, 11] Liu et al. proposed a coarse to fine

approach by using multi-modal features, including visual

features, license plate, camera location, and other contex-

tual information. [30] and [28] used generative adversar-

ial networks to synthesize vehicle images with diverse pose

and appearance in order to augment the training data. In

addition, both works demonstrated significant performance

improvement for the vehicle ReID task. Besides the global

features, Liu et al. [12] suggested region-aware deep model

which extracted discriminative local features from a series

of local regions of a vehicle. Similarly, Wang et al. [25]

also proposed an orientation-invariant feature embedding

(OIFE) to fuse the global feature and orientation-aware fea-

tures which are generated by focusing on important local re-

gions through orientation-aware region proposal. Recently,

AAVER[6] proposed an adaptive attention obtained by con-

sidering the visible landmarks.

With increasing interest in public safety, anomaly de-

tection has been studied in recent years. However, it

has been limited to the context of detecting pedestrians

on streets[16, 20]. Sabokrou et al. in [18] proposed a

cascade classifier-based method to classify image patches

into background or anomalies. [15] modeled human be-

haviour on streets using mathematical equations applied

to pre-determined heuristics. In [22], to avoid labeling

the segments of clips as anomalous, authors proposed us-

ing weakly labeled training samples in which videos with

anomalies are labeled as anomalous. In contrast, our ap-

proach is unsupervised and models the behaviour of vehi-

cles on streets by observing the tracklets and the movement

of surrounding vehicles.

3. Track 2: City-Scale Multi-Camera Vehicle

Re-Identification

The purpose of this track is to design a system that can

find true matches to a given query image in a large gallery

set. In the following subsections, we describe the designed

dataset for this track. This is followed by a description of

the proposed approach to tackle this problem.

3.1. Dataset

For this track a dataset, CityFlow-ReID [24], composed

of 56,277 images of 666 different vehicle identities has been

provided. The dataset is divided into 2 splits:

• Training Split : 36,935 images are considered for the

this split. These images are gathered by tracking 333

vehicles in videos which generated 1897 tracks.

• Testing Split: 18,920 images of the remaining 333 ve-

hicles captured in 798 tracks from the gallery set. The

remaining 1052 images of the test split are used as the

query or probe set.

3.2. Proposed Approach

The proposed vehicle re-identification approach is com-

posed of three main stages: (1) Pre-Processing, (2) Discrim-

inative Feature Extraction and (3) Post-Processing. Fig. 3
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Figure 3: The proposed approach for robust feature extraction pipeline. The input image is initially cropped to discard

unwanted parts of the image. Features from the global appearance of the vehicle along with local features obtained through

adaptive attention [6] are fused. Finally, the resulting feature vector is mapped to a lower dimensional space to yield a robust

discriminative embedding.

(a) Original Image (b) Cropped Image

Figure 4: Images in the CityFlow-ReID dataset are loosely

cropped. In (a) it can be observed that almost 75% of the

image contains information irrelevant to the vehicle. (b)

Running a detector on the images assists in obtaining a well

constrained bounding box.

demonstrates the pipeline of the proposed approach. We

describe each module in the following subsections.

3.2.1 Pre-Processing

The CityFlow-ReID dataset has been gathered from real

world camera feeds by applying an object detector on video

frames and tracking the detected vehicles. We observed that

in many cases, the images of tracked vehicles are relatively

larger than the actual vehicle of interest and therefore a con-

siderable portion of image does not contain any information

about the car and might confuse the re-identification sys-

tem. Consequently, we ran the Detectron [3] object detec-

tor, which implements the Mask R-CNN object detector, on

all the images in the CityFlow-ReID dataset. Mask R-CNN

predicts the object mask along with the bounding box which

helps with tightening the predicted bounding boxes. Fig. 4

shows the importance of this step.

3.2.2 Discriminative Feature Extraction

The most important part of any re-identification system is

the feature extraction module. This module must be robust

since vehicles of the same make, model and color share vi-

sual similarities and there are only subtle differences that

can help in differentiating them. Also, the same vehicles

can have different visual appearances based on their orien-

tation. To this end, we employ the state of the art image-

based vehicle re-identification system, AAVER[6] to extract

discriminative features for vehicle identities. AAVER first

extracts global appearance information of the vehicle, then

it estimates the orientation of the vehicle along with key-

points defined in [26]. Based on the orientation of the ve-

hicle, it selects a subset of the predicted key-points and ex-

tracts features in their vicinity. Finally, these two sets of fea-

tures are combined into a single discriminative feature vec-

tor. The encoded feature vector contains information about

the color, make, model and the identity of the vehicle.

According to Tang et al. [24], CityFlow-ReID is

one of the most challenging publicly available vehicle

re-identification datasets to date mostly due to illumina-

tion variations arising from climatic aberrations, occlusion,

scale and quality of images. The other publicly available

datasets that have similarities to CityFlow-ReID, are Veri-

776 and VRIC [5].

Veri-776 dataset is composed of 49,357 images of 776

vehicle identities in a network of 20 non-overlapping cam-

eras. The vehicle images in this dataset capture vehicles in

different orientations similar to the CityFlow-ReID dataset.

VRIC dataset which is gathered from detection and

tracking UA-DETRAC benchmark[27, 14], includes 60,430

images of 5,622 vehicle identities. All the images are cap-

tured by a network of 60 cameras and are of low resolution

and have extreme variations in scale, and aspect ratio simi-

lar to CityFlow-ReID dataset.

Since these two datasets share similarities with

CityFlow-ReID, we take advantage of them when train-

ing the AAVER model. For training the two paths of the

AAVER model we used then L2 softmax loss function sug-
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gested in [17], which can be mathematically expressed as:

L = − log
exp(W T

y ( αx
‖x‖2

) + by)
∑N

j=1 exp(W
T
j ( αx

‖x‖2

) + bj)
(1)

where x is the embedding corresponding to the input of

class y, Wj and bj are corresponding weight and bias to

class label j, α is a trainable positive scalar and N is the

number of classes.

3.2.3 Post-Processing

As seen in Fig. (7a), the AAVER model, results in rela-

tively discriminative features on the challenging CityFlow-

ReID dataset and separates the identities to a certain extent

in the feature space. To ensure the maximum separation

of identities, we apply the TPE method over the deep fea-

tures generated by AAVER. TPE, a linear transformation to

a lower dimensional space, couples the DCNN-based ap-

proaches and serves as a discriminative embedding step.

While TPE provides the advantages of triplet learning, it

can be learned relatively fast. In order to train the TPE, as-

sume the triplet (xa,xp,xn) in which xa, xp and xn are

the n dimensional feature vectors corresponding to an an-

chor, its positive and negative respectively. Here we would

like the similarity score of the pair (xa,xp) to be larger than

the similarity score of pair (xa,xn) which happens with the

probability of

p(xa,xp,xn) =
ex

T
a xp

ex
T
a xp + ex

T
a xn

(2)

Now under the linear transformation W : IRn
−→ IRd,

TPE tries to maximize the probability that positive pairs

cluster together in the d-dimensional space. TPE is learned

by solving the following optimization problem:

argmin
W

∑

(xa,xp,xn)∈T

− log (p(Wxa,Wxp,Wxn)) (3)

Where T is the set that contains all possible triplets.

After training the AAVER deep model and extracting the

training set features, we train the TPE matrix over the ex-

tracted features to learn a discriminative lower dimensional

representation.

The task of Nvidia AI City Challenge Track 2 consid-

ers video-based vehicle re-identification. Based on this, we

initially learn discriminative features via the AAVER deep

model and the TPE transformation. At the time of infer-

ence, we first group all the images in the gallery set ac-

cording to the tracking information. Next, in each group of

tracked images we find the similarity of the probe image to

the members of the group and use the mean of the highest

five similarity scores as the similarity score of the group. At

this point, every group has a similarity score with respect

to the query. Finally, we rank all the groups based on these

similarity scores and the gallery is ranked accordingly.

4. Track 3: Vehicle Anomaly Detection

4.1. Dataset

The NVIDIA AI City Challenge provides 100 uncon-

strained videos in both training and testing sets for the task

of vehicle anomaly detection. These videos represent real-

world conditions, and varying levels of difficulty.

4.2. Video Stabilization

Many traffic cameras in this dataset have significant cam-

era motion which causes misalignment in the detection of

vehicles in consecutive frames. This negatively impacts ve-

hicle tracking performance and causes significant tracklet

fragmentation. We use an open source tool [21] for video

stabilization to reduce the impact of camera motion.

4.3. Vehicle Detection

We used the Detectron object detector as the vehicle de-

tector. Qualitative comparison between Mask R-CNN and

other state-of-the art detectors reveals that the Mask R-CNN

generalizes well to the domain of the NVIDIA AI City

dataset and is able to detect large number of vehicles, par-

ticularly in high density scenes. For this challenge, we are

interested in detecting cars, trucks, bikes, people, and traffic

lights. However, Mask R-CNN has two drawbacks. First,

the detector often incorrectly classifies street signs, bill-

boards, and buildings as vehicles with a high degree of con-

fidence. In addition, it is unable to detect several instances

of anomalous vehicles due to partial occlusion, small size,

or poor contrast with the background. Although our method

does not address the issue of detecting small vehicles, we

propose a solution to the falsely detected signs, billboards,

and buildings in section 4.5.3.

4.4. Tracking

We use SORT [1] to cluster vehicles with the same iden-

tity into tracklets. SORT provides comparable accuracy to

state-of-the-art methods and runs significantly faster than

its deep learning based counter parts. We use a Kalman

filter-based tracker rather than a deep learning based model

because a majority of the tracks do not correspond to ac-

tual anomalies. Most tracklets are rejected by the first stage

filtering step. Extracting deep features for all the vehicles,

particularly in dense scenes, did not provide any measurable

improvement in performance.

SORT provides high quality tracks in most scenarios, but

it fails in two cases. First, it automatically assigns a new

track identity for a given vehicle when there is partial or to-

tal occlusion. This causes track fragmentation when one ve-
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Figure 5: Proposed two-stage model for vehicle anomaly

detection

hicle passes in front of another vehicle. Second, the tracker

occasionally transfers a given track identity to a different

vehicle when two vehicles move in close proximity to one

another. This occurs when two vehicles temporarily have

a large overlap in their bounding boxes and because SORT

does not use discriminative features when tracking vehicles.

Our method addresses both of these shortcomings in section

4.5.2.

4.5. Proposed Method

Classifying anomalous behavior requires contextual in-

formation to accurately separate stalled vehicles and acci-

dents from normal traffic. Anomalies share several charac-

teristics: (1) Vehicles of interest are immobile for longer

than other vehicles. (2) Anomalous vehicles are signifi-

cantly slower than surrounding traffic. These observations

motivate the design of the proposed approach, as described

in 5. We leverage these two observations about anomalous

Moving 
Vehicle

First Frame Full Chunk

Stationary 
Vehicle

Figure 6: Stationary vehicles will generally have smaller

spatial footprints when compared to moving vehicles.

vehicles to design a two-stage approach. First, we flag vehi-

cles that are traveling slowly. We select these initial propos-

als by searching for vehicles in which sequential bounding

boxes have significant spatial overlap. Next, we establish a

cuboid search radius around the initial proposals and com-

pare the attributes of each anomaly proposal with those of

vehicles within spatial and temporal bounds of the cuboid

to refine our initial proposals.

4.5.1 Slow Vehicle Detection

Anomalous vehicles are generally much slower than the

vehicles around them. We measure this by first splitting

a given track into chunks of equal length. We then com-

pare the Intersection over Union (IoU) of the first frame of

a given chunk with the motion pattern of the total chunk.

A chunk is considered anomalous if the IoU between the

bounding box of the first frame and the motion pattern of the

entire chunk is above a given threshold. A track is consid-

ered anomalous if a fraction of chunks is anomalous above

a given threshold. For each chunk, we create two masks.

As shown in Fig. 6, we set the region defined by the first

frame bounding box to 1 in the first mask. Then we take the

union of bounding boxes in the chunk and set the derived

spatial extent to 1 in the other mask. We then compare the

two masks by calculating the IoU and if the IoU is above

a given threshold the corresponding vehicle is flagged as a

proposal for an anomaly.

4.5.2 Proposal Merging

Inspired by [13], we consider the spatio-temporal consis-

tency of two tracklets, and the ReID score to merge propos-

als. This step is essential for increasing the separation be-

tween true positives and false positives, allowing additional

proposal filtering based on the length of the track.

4.5.3 Context Aware Proposal Filtering

Vehicles in slow traffic will likely be detected by the first

stage algorithm. However, inspection of the surrounding ve-

hicles inform us that the exhibited behavior is normal given

the behavior of the surrounding group. To accomplish this,

we propose a context-based reasoning to remove proposals

of parked vehicles and vehicles at traffic lights. For each

proposal longer than a set threshold, we compare the pixel

velocity of corresponding vehicle against its neighbors.

Lastly, after filtering all the proposals, we iterate through

the original list of proposals to find tracklets that have a high

spatial overlap with the final anomaly proposals and may

have been improperly filtered. This additional step helps

improve temporal precision.

4.5.4 Road Boundary Model

We apply the motion and location of vehicles to generate a

road boundary model. Specifically, we only consider vehi-

cles that were previously not considered as potential propos-

als. We plot the location of each vehicle for every frame and

use this road mask to obtain vehicle’s proximity to the road.

We recalculate this road mask for every proposal which pre-

vents the mask from being corrupted if the camera angle or
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Figure 7: (a) Shows the progression in precision obtained

after each step. It can be observed that triplet embedding

and external data are crucial for the obtained results. (b)

Demonstrates the enhancement that each added step brings

to the overall anomaly detection system.

position is changed. In addition, this step helps to reject

proposals in regions of the video with significant tearing.

4.6. Proposal PostProcessing

Finally, we merge the proposals that are within a given

time interval from each other. This helps to fill in potential

gaps in detections.

5. Experiments

In this section we describe the details of implementing

our models for both vehicle re-identification and anomaly

detection tracks.

5.1. Vehicle Reidentification

The AAVER model has two paths, one for extracting

global appearance features and one for extracting the orien-

tation conditioned part appearance features. We first initial-

ize the global appearance path of AAVER with the weights

pre-trained on the CompCars dataset. Subsequently, we

start training the global appearance branch on the 3,720

(333 from CityFlow-ReID, 576 from Veri-776 and 2,811

from VRIC) unique identities in their respective training

sets. We used the test set of Veri-776 dataset as the evalua-

tion set to measure the network’s performance, We trained

the network for 10 epochs with an initial learning rate of

10−4 using ADAM optimizer[7]. During training, images

are randomly flipped horizontally and rotated with a ran-

dom rotation angle θr ∼ U(−5◦, 5◦) as means of data aug-

mentation. After training the global appearance path of the

AAVER, its weights are frozen and parameters of the part

appearance path are initialized with the weights from the

network trained on CompCars dataset. We trained the sec-

ond path for two epochs after which the model starts to

over fit to the training data. It is worth mentioning that a

single global appearance branch cannot capture minute dif-

ferences between vehicles of similar appearance and unsur-

prisingly we observe a significant improvement in perfor-

mance (more than 5%) by augmenting the global appear-

ance model with AAVER. This can also be seen in Fig. 7a

Based on the results obtained from the evaluation server,

we consider three scenarios for training the second path of

AAVER: Training (1) only on the CityFlow-ReID dataset,

(2) on CityFlow-ReID and Veri-776 datasets, (3) CityFlow-

ReID, Veri-776, VRIC datasets. Fig. 7a shows that append-

ing different training datasets contributes towards improve-

ment in re-identification accuracy despite the existence of

domain shift across the datasets. Triplets are randomly se-

lected and different TPE matrices are obtained for each sce-

nario by solving the optimization problem in Eq. 3 over

10, 000 iterations. In each of the above mentioned scenar-

ios, the overall model is capable of achieving an mAP score

of greater than 56%. Therefore, in the subsequent experi-

ment an ensemble of the above models is considered. Our

motivation relies on the assumption that, depending on the

dataset, the decision boundaries of each network are dif-

ferent and will work in conjunction by providing comple-

mentary information to each other as they are trained for

the same task. This resulted in an improvement of more

than 2% in mAP score and training a TPE on this ensemble

improved the results further to 60.78%. Figurs 1 and 8 qual-

itatively shows the retrieval results of two probe images.

5.2. Anomaly Detection

Our experiments are informed by the quantitative anal-

ysis of the training set and a qualitative analysis of the test

set. Each feature was crafted to generalize on the entire
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Figure 8: Top five results of the proposed method for a given

probe. We can observe that while the returned images are

all visually similar and even share the same make, model

and color, they do not share the same identity. Here the true

match is most likely in rank 4 entry.

dataset. This approach helped us improve our F1 score as

seen in Fig. 7b. Our final S3 score is 22.07%. This score

is comprised of the product of F1 score and NRMSE score.

Our F1 score is 57.14% and our NRMSE is 0.6137.

Our experiments are limited by the quality of detections,

length of each vehicle tracklet, and the number of hyper-

parameters. Each external module was used off-the-shelf,

and was not fine-tuned on the specific domain. However,

application specific detection and tracking would have in-

creased the effectiveness of our context aware modules.

While our proposed model localizes considerable number

of anomalous vehicles in the track 3 dataset, it suffers from

false positives. As seen in Fig. 9, our module incorrectly

classifies vehicles in parking lots as anomalous if no other

vehicles in the parking lot are detected. Our search space is

arbitrarily large and extends onto the road, giving improper

context for that particular proposal. Since these false posi-

tives are stationary, they obscure the temporal bounds of a

true anomaly, adversly affecting our performance on the S3

evaluation metric.

6. Conclusion

In this work we approached two tracks of the Nvidia AI

City Challenge 2019, namely Vehicle Re-identification and

Anomaly Detection.

For the Vehicle Re-Identification track we presented a ro-

bust vehicle re-identification system that relies on the highly

discriminative features extracted by the AAVER model and

further increases the accuracy of features while reducing

their dimensionality using the method of triplet probabilis-

tic embedding. Moreover, we make use of external datasets

with similar characteristics and the ensemble of feature ex-

tractors which considerably improved the accuracy of the

overall Re-ID model.

True Positives False Positives

Video 1, Test Set Video 4, Test Set

Video 12, Test Set Video 23, Test Set

Figure 9: Despite accurately localizing many anomalies, the

temporal bounds of our predictions are obfuscated by false

positive detections

For the anomaly detection track we proposed a non-deep

learning approach that considers local context in order to

classify a vehicle. We developed this algorithm by observ-

ing trends in anomaly incidents and the behavior of sur-

rounding vehicles.
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