
Deep k-NN Defense Against Clean-label Data
Poisoning Attacks

Neehar Peri?, Neal Gupta?, W. Ronny Huang?, Liam Fowl, Chen Zhu, Soheil
Feizi, Tom Goldstein, and John P. Dickerson

Center for Machine Learning, University of Maryland - College Park
{wronnyhuang}@gmail.com, {john}@cs.umd.edu

Abstract. Targeted clean-label data poisoning is a type of adversarial
attack on machine learning systems in which an adversary injects a few
correctly-labeled, minimally-perturbed samples into the training data,
causing a model to misclassify a particular test sample during inference.
Although defenses have been proposed for general poisoning attacks, no
reliable defense for clean-label attacks has been demonstrated, despite
the attacks’ effectiveness and realistic applications. In this work, we
propose a simple, yet highly-effective Deep k -NN defense against both
feature collision and convex polytope clean-label attacks on the CIFAR-10
dataset. We demonstrate that our proposed strategy is able to detect
over 99% of poisoned examples in both attacks and remove them without
compromising model performance. Additionally, through ablation studies,
we discover simple guidelines for selecting the value of k as well as for
implementing the Deep k -NN defense on real-world datasets with class
imbalance. Our proposed defense shows that current clean-label poisoning
attack strategies can be annulled, and serves as a strong yet simple-to-
implement baseline defense to test future clean-label poisoning attacks.
Our code is available on GitHub.

Keywords: Machine Learning, Adversarial Attacks, Clean Label Poi-
soning, Deep k-NN

1 Introduction

Machine-learning-based systems are increasingly being deployed in settings with
high societal impact, including hate speech detection on social networks [22],
autonomous driving [4], biometric-based applications [29], and malware detection
[20]. In these real world applications, a system’s robustness to not only noise,
but also adversarial manipulation is paramount. With an increasing number of
machine learning systems trained on data sourced from public and semi-public
places such as social networks, collaboratively-edited forums, and multimedia
posting services, adversaries can strategically inject training data to manipulate
or degrade system performance.
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Data poisoning attacks on neural networks occur at training time, wherein
an adversary places specially-constructed poisoned examples into the training
data with the intention of manipulating the behavior of the system at test time.
Recent work on data poisoning has focused on either (i) an attacker generating a
small fraction of training inputs to degrade overall model performance, or (ii) a
defender aiming to detect or otherwise mitigate the impact of that attack. In this
paper, we focus on clean-label data poisoning [25], where an attacker injects a
small number of correctly labeled, minimally perturbed samples into the training
data. In contrast with traditional data poisoning, these samples are crafted to
cause a model to misclassify a particular target test sample during inference.
These attacks are plausible in a wide range of applications, as they do not require
the attacker to have control over the labeling function. Many large scale data
sets are automatically scraped from the internet without direct supervision, so
an adversary need only share their poisoned data online.

Our contribution: In this paper, we initiate the study of defending against
clean-label poisoning attacks on neural networks by considering feature collision
[25] and convex polytope attacks [35] on the CIFAR-10 dataset. Although poison
examples are not easily detected by human annotators, we exploit the property
that adversarial examples have different feature distributions than their clean
counterparts in higher layers of the network, and that those features often lie
near the distribution of the target class. This intuition lends itself to a defense
based on k nearest neighbors in feature space, in which the poison examples are
detected and removed prior to training. Further, the parameter k yields a natural
lever for trading off between the number of undetected poisons and number of
discarded clean images when filtering the training set.

Our contributions can be outlined as follows.

– We propose a novel Deep k -NN defense for clean-label poisoning attacks. We
evaluate it against state-of-the-art clean-label data poisoning attacks, using
a slate of architectures and show that our proposed strategy detects 99% of
the poison instances without degrading overall performance.

– We reimplement a set of general data poisoning defenses [14], including L2-
Norm Outliers, One-Class SVMs, Random Point Eviction, and Adversarial
Training as baselines and show that our proposed Deep k -NN defense is more
robust at detection of poisons in the trained victim models.

– From the insights of two ablation studies, we assemble guidelines for imple-
menting Deep k -NN in practice. First we provide instructions for picking an
appropriate value for k. Second, we provide a protocol for using the Deep
k -NN defense when class imbalance exists in the training set.

2 Overview of Clean-label Data Poisoning

We briefly describe the how clean-label data poisoning works and the intuition
behind a neighborhood conformity defense. Figure 1 shows the feature space
representation (i.e. the representations in the penultimate layer of the network)
for a targeted poisoning attack that causes a chosen target airplane image (feature



Deep k -NN Defense Against Data Poisoning Attacks 3

representation shown as the dark gray triangle) to be misclassified as a frog
during inference. To accomplish this, poison frog images (feature representation
shown as dark orange circles) are perturbed to surround the target airplane in
feature space. After training on this poisoned data set, the model changes its
decision boundary between the two classes in order to accommodate the poison
frogs, enveloping them onto the side of the frogs. Inadvertently, the nearby target
airplane is also placed on the the side of the frogs, leading to misclassification.
Under the feature collision attack [25], the perturbations are optimized so as to
minimize the poison images’ distance to the target image in feature space,

xp = arg min
x

|φ(x)− φ(xt)|22 + |x− xb|22,

where xp, xb, xt are the poison, base, and target images, respectively, and φ is a
feature extractor that propagates input images to the penultimate layer of the
network. Alternatively, under the convex polytope attack [35], poisoned data
points are optimized to form a convex hull of poisons around the target via a
more sophisticated loss function. In both cases nonetheless, models fine-tuned on
the poisoned dataset will have their decision boundaries adversarially warped
and classify the targeted airplane image as a frog at inference time. Though the
optimization causes a noticeable change in the feature representations of the
images, the poison frogs are perturbed under some small `2 or `∞ constraint so
that they still appear to be frogs to a human observer.

2.1 Intuition behind Deep k-NN Defense

As seen in Figure 1, poisons are surrounded by feature representations of the target
class rather than of the base class. For instance, when k = 3 and npoison = 2, each
poison will almost always have a plurality of its neighbors as a non-poison in the
target class. Since the plurality label of a poisons neighbors does not match the

Fig. 1: Proposed Deep k -NN defense (k = 3) correctly removing a poisoned
example by comparing the class labels of poison with its k neighbors. Since a
majority of the k points surrounding the poison do not share the same class label
as the poison, it is removed.
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label of the poison itself, the poison can be removed from the dataset or simply
not used for training. More generally, if k > 2npoison, then we would expect the
poisons to be outvoted by members of the target class and be filtered from the
training set. Note that by setting k > 2npoison, the poisons’ label cannot be
the majority, but may still be the plurality, or mode, of the Deep k -NN set if
the nearest neighbors of the current point are in multiple classes. Empirically,
however, we do not observe this to be the case. Extracted features tend to be
well-clustered by class; thus there are usually only 2 unique classes in the Deep
k -NN neighborhood, base class and target class, with the target class being larger.
Therefore, in order to successfully defend against adversarial manipulation, a
victim needs only to set a sufficiently large value of k without needing to know
exactly how many poisons there are a-priori. We further elucidate on the effect
of k in Section 6.

3 Related Work

We briefly overview related work in the space of defenses to adversarial attacks
[2, 8], which are categorized into two groups: inference time evasion attacks
and train time data poisoning attacks. Most adversarial defenses have focused
on mitigating evasion attacks, where inference-time inputs are manipulated to
cause misclassification. In neural networks, evasion adversarial examples are
perturbed such that that the loss on the victim network increases. The search for
an optimal perturbation is facilitated by use of the local gradient ∇xL obtained
via backpropagation on either a white box network or a surrogate network if the
victim network is unknown [16]. Many defenses against evasion attacks leverage
the attacker’s reliance on gradient information by finding ways to obfuscate
gradients, using non-differentiable layers or reshaping the loss surface such that
the gradients are highly uncorrelated. [1] showed that obfuscated gradient defenses
are insufficient for defending against evasion attacks. Using various strategies to
circumvent loss of gradient information, such as replacing non-differentiable layers
with differentiable approximations during the backward pass, [1] demonstrates
that stronger attacks can reduce inference accuracy to near zero on most gradient-
based defenses. Defense strategies that withstand strong attacks are characterized
by loss surfaces that are “smooth” with respect to a particular input everywhere
in the data manifold. Variants of adversarial training [17,26, 33] and linearity or
curvature regularizers [18,21] have maintained modest accuracy despite strong
multi-iteration PGD attacks [17].

In evasion attacks, Deep k -NN based methods have been used across multiple
layers of a neural network to generate confidence estimates of network predictions
as a way to detect adversarial examples [19]. Similarly, [27] proposes a white box
threat model where an adversary has full access to the training set, and uses prior
knowledge of model hyper-parameters, including the value of k used in the Deep
k -NN defense when constructing poisons for general attacks. Our Deep k -NN
based defense differs in that it identifies and filters poisoned data at training
time rather than at test time, using only ground truth labels. Furthermore, a
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soft nearest neighbor regularizer has been used during training time to improve
robustness to evasion examples [6], but its resistance to clean-label poisoning
examples has yet to be explored.

Backdoor attacks have recently received attention from the research com-
munity as a realistic threat to machine learning models. Backdooring, proposed
by [9], can be seen as a subset of data poisoning. In their simplest form, backdoor
attacks modify a small number of training examples with a specific trigger pattern
that is accompanied by a target label. These attacks exploit a neural network’s
ability to over fit to the training set data, and use the trigger at inference time
to misclassify an example into the target class. The trigger need not change
the ground truth label of the training example, making such attacks clean-label
attacks [32]. However, these attacks rely upon the attacker being able to modify
data at inference time, an assumption that may not always hold true, and one we
do not make in this paper. A number of defenses to backdoor attacks have been
proposed, primarily seeking to sanitize training data by detecting and removing
poisons. Often, these defenses rely upon the heuristic that backdoor attacks
create “shortcuts” in a neural network to induce target misclassification. [28]
employed two variants of an `2 centroid defense, which we adapt in this paper. In
one case, data is anomalous if it falls outside of an acceptable radius in feature
space. Alternatively, data is first projected onto a line connecting class centroids
in feature space and is removed based on its position on this line.

[3] proposed using feature clustering for data sanitation. This defense assumes
that naive backdoor triggers will cause poison samples to cluster in feature space.
The success for this defense diminishes drastically when exposed to stronger
poisoning methods which do not use uniform triggers. Convex polytope attacks
[35] create much stronger poisons by surrounding a target image in feature
space with a convex hull of poisons. Such attacks will not always result in easily
identifiable clusters of poisons. [31] examines spectral signatures as a method
for detecting backdoor attacks, stating that all attacks share a set of underlying
properties. Spectral signatures are boosted in learned representations, and can
be used to identify poisoned images through SVD.

4 Defenses against Clean-Label Poisoning

In this section, we formally introduce the Deep k -NN defense as well as a set
of other baseline defenses against clean-label targeted poisoning attacks. We
compare the effectiveness of each defense against both feature collision attacks
and convex polytope attacks in Section 5.

We use xt to denote the input space representation of the target image that
an adversary tries to misclassify. The target has true label lt but the attacker
seeks to misclassify it as having label lb. We use xb to denote a base image having
label lb that is used to build a poison after optimization. We use xw to denote a
base image watermarked with a target image, that is γ · xt + (1− γ) · xb. To a
human observer this image will retain the label lb when γ is sufficiently low. We
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use φ(x) to denote the activations of the penultimate layer of a neural network.
We refer to this as the feature layer or feature space and φ(x) as features of x.
Deep k-NN Defense: For each data point in the training set, the Deep k -NN
defense takes the plurality vote amongst the labels of that point’s k nearest
neighbors in feature space. If the point’s own label is not the mode amongst
labels of its k nearest neighbors, the point is flagged as anomalous, and is not
used when training the model. We use Euclidean distance to measure the distance
between data points in feature space. See Algorithm 1.

Algorithm 1: Deep k -NN Defense

Result: Filtered training set Xtrain′

Let Sk(x(i)) denote a set of k points such that for all points x(j) inside the set
and points x(l) outside the set, |φ(x(l))− φ(x(i))|2 ≥ |φ(x(j))− φ(x(i))|2
Xtrain′

← {}
for Data points x(i) ∈ Xtrain do

Let l denote the label of x(i) and let l(Sk(x(i))) denote the labels of the
points in Sk(x(i))

if l ∈ mode(l(Sk(x(i)))) then

Xtrain′
← Xtrain′

∪ {x(i)};
else

Omit x(i) from Xtrain′
;

end

end

L2-Norm Outlier Defense: The L2 norm outlier defense removes an ε > 0
fraction of points that are farthest in feature space from the centroids of their
classes. For each class of label l ∈ L, with size sl = |x(j) s.t. l(j) = l|, we compute
the centroid cl as

cl =
1

sl

∑
x(j)s.t.l(j)=l

φ(x(j))

and remove bεslc points maximizing |φ(x(j))−cl|2. The L2 norm defense relies on
the position of the centroid to filter outliers. However, the position of the centroid
itself is prone to data poisoning if the per-class data size is small. This defense is
adapted from traditional poison defenses not specific to neural networks [14].
One-Class SVM Defense: The one-class SVM defense examines the deep
features of each class in isolation by applying the one-class SVM algorithm [24]
to identify outliers in feature space for each label in the training set. It utilizes a
radial basis kernel and is calibrated with a value ν = 0.01.
Random Point Eviction Defense: The random point eviction defense is a
simple experimental control. It filters out a random subset of all training data.
We remove 1% of our training data for the feature collision attack and 10% of our
training data on the convex polytope attack. If the poisoning attack is sensitive
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to poisons being removed, the random defense may be successful, at the cost of
losing a proportionate amount of the unpoisoned training data.
Adversarial Training Defense: Thus far, we have only considered defenses
which filter out examples prior to training. We consider here another defense
strategy that does not involve filtering, but rather involves an alternative victim
training procedure. Adversarial training, used often to harden networks against
evasion attacks [7, 17], has been shown to produce neural network feature extrac-
tors which are less sensitive to weak features such as norm-bounded adversarial
patterns [13]. We explore here whether a victim’s use of an adversarially trained
feature extractor would yield features that are robust to clean-label data poison-
ing. Instead of the conventional loss over the training set, adversarial training
aims to optimize

min
θ
Lθ(X + δ∗),where δ∗ = argmax

δ<ε
Lθ(X + δ),

where θ, X, and δ are the weights, training input, and adversarial perturbations,
respectively, and Lθ is some training loss (i.e., cross-entropy). In our experiments,
we perform adversarial training following the standard procedure in [17], using
an `∞ PGD adversary of 20 steps and ε = 8.

5 Evaluation

In this section, we evaluate the effectiveness of our Deep k -NN defense and
baseline defenses against the feature collision [25] and convex polytope [35]
attacks on the CIFAR-10 dataset [15]. All model architectures, data splits, and
hyperparameters are taken directly from the evaluation setups used in [25,35].
We define the defense success rate as the number of times the poisoning attack
fails to cause the target example to be misclassified, divided by the number of
attempts. We only consider sets of poisons that lead to successful attacks in the
undefended case so by definition the undefended defense success rate is 0%.

5.1 Defense against Feature Collision Attacks

Attack Procedure We randomly select 50 images in the base class. For each
base image with input representation xb, we compute the watermark base xw ←
γ ·xt+(1−γ) ·xb, then optimize p with initial value w using a forward-backward
splitting procedure to solve

xp = arg min
x

|φ(x)− φ(xt)|22 + β|x− xw|22

The hyperparameter β is fixed at 0.1. The resulting poisons xp are both close to
the target image xt in feature space, and close to the watermarked input xw in
image space. To ensure statistical significance, we craft 16 of these collections of
50 poisons and evaluate each collection independently.
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Defense Procedure As in the original setup [25], we first train a modified
AlexNet to convergence using only clean data. Next we apply our defenses on the
set of clean data plus poisons to obtain a filtered dataset. That filtered dataset
is then used to fine tune the pretrained model over 10 epoch with a batch size of
128. We evaluate the performance of all defenses described in Section 4 against
collections of 50 poisons that successfully cause a targeted misclassification.

Results As seen in Table 1, the Deep k -NN defense with k = 5000, successfully
identifies all but one poison across multiple attacks, while filtering just 0.6% of
the clean images from the training set. As a result, after victim training, models
defended by Deep k -NN have defense success rates of 100%. In contrast, the
L2-norm defense only identifies roughly half the feature collision poisons using
ε = 0.01. Both the One-Class SVM and the Random Point Eviction defenses are
unable to detect a majority of the feature collision poisons.

Table 1: Comparing the effectiveness of baseline defenses aggregated for all model
architectures in Feature Collision Attack

Defense Strategy Poisons
Removed

Clean Images
Removed (%)

Defense Success
Rate (%)

CIFAR-10 Test
Accuracy (%)

Deep k -NN (k = 5000) 799/800 0.6 100.0 74.6
L2-Norm Outliers 395/800 1.0 50.0 74.6
One-class SVM 168/800 1.0 37.5 74.5
Random Point Eviction 84/800 10.0 12.5 74.5

5.2 Defense against Convex Polytope Attacks

Attack Procedure Following the procedure in [35], the CIFAR-10 dataset is
split into 48000 images for pretraining, and 500 images for fine-tuning. The poison
base images are taken from the remaining split of 1500 images.

Since the attacker does not know the victim model parameters, they first
pretrain their own model to convergence using the same subset of 48000 CIFAR-10
images used for pretraining. Next, an adversary uses this surrogate model to craft
5 poisons using the convex polytope method. To ensure statistical significance,
102 collections of 5 poisons are crafted.

When crafting convex polytope poisons, multiple surrogate models with
different architectures are ensembled, so that the generated poisons generalize
to victim architectures that the poisons were not crafted on. Our results are
based on eight architectures: two of which are not used in crafting the poisons
(black box setting), and six which use random initialization (grey box setting).
The grey-box architectures are DPN92 [5], GoogLeNet [30], MobileNetV2 [23],
ResNet50 [10], ResNeXT29-2x64d [34], and SENet18 [11], while the black-box
architectures are DenseNet121 [12] and ResNet18 [10].
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Fig. 2: The Deep k -NN Defense is model-
agnostic, achieving high defense success
rate and test classification accuracy.

Defense Procedure The victim
model is first pretrained to conver-
gence using a random initialization
unknown to the attacker on the 48000
pretraining images from CIFAR-101.
Our defenses are applied to the 500
fine-tuning images plus poisons to ob-
tain a filtered fine-tuning set2. Finally,
this filtered dataset is used to fine-tune
the victim model.

Again, the performance of all de-
fenses is reported only on collections
of poisons that lead to a successful at-
tack in the undefended case. Since the
attacker did not have access to the vic-
tim architecture or model parameters
during crafting of the poisons, the de-
fenses are evaluated independently for
each individual victim architecture.

Results The aggregate results of each defense strategy on all 8 architectures
are shown in Table 2. Both the Deep k -NN and L2-Norm defense filter out
nearly all poisons, while incorrectly removing 4.3% and 9.1% of the clean training
examples, respectively. Compared to feature collision poisons, convex polytope
poisons trigger more false positive detections (i.e. clean images removed) across
all defense methods, leading to fewer remaining clean examples and reduced test
accuracy.

Surprisingly, the L2-Norm defense is much better able to detect convex
polytope poisons compared to feature collision poisons; it detects almost as many
as Deep k -NN . However, it has a lower specificity because it removes more
clean images, resulting in half-percent lower test accuracy. These results are
broken down for each victim architecture in Figure 2. The Deep k -NN attack is
successful on all architectures with perfect defense success rate. L2-norm Outliers
and Adversarial Training perform almost as well. Other strategies largely fail to
be a viable defense.

We evaluate the effectiveness of adversarial training on the Convex Polytope-
crafted poisons. In Table 2 and Figure 2, adversarially trained feature extractors—
trained naively to provide resistance against only evasion attacks—do in fact
help mitigate poisoning attacks as well. To our knowledge, this is the first time
adversarial training has been shown to provide resistance against data poisoning
(i.e. training time) attacks and is a direction for future work.

1 We use conventional training loss for all except the adversarial training defense.
2 There is no filtering in adversarial training.
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Fig. 3: Feature space visualization of the
Deep k -NN Defense against a Convex
Polytope Attack on DPN92.

The defense however significantly
hurts test set accuracy (as is common
for adversarially trained networks),
which drops to 85% on average, com-
pared with 94% on the same archi-
tectures without adversarial training.
In scenarios when adversarial training
for evasion attack robustness is not
required, such as in situations when
adversaries cannot control test time
inputs, the Deep k -NN defense pro-
vides the poisoning resistance without
the burden of decreased generalization
performance.

Table 2: Comparing the effectiveness of baseline defenses aggregated for all model
architectures in Convex Polytope Attack

Defense Strategy Poisons
Removed

Clean Images
Removed (%)

Defense Success
Rate (%)

CIFAR-10 Test
Accuracy (%)

Deep k -NN (k = 50) 510/510 4.3 100.0 93.9
L2-Norm Outliers 509/510 9.1 99.0 93.4
One-class SVM 114/510 7.1 29.9 91.7
Random Point Eviction 47/510 10.0 33.2 91.3
Adversarial Training - - 98.6 85.2

5.3 Feature Space Visualization

The favorable results of Deep k -NN defense also afford us an opportunity to
understand anomaly detection in deep networks more generally via observing the
effects in feature representations. A feature space visualization of the penultimate
layer of the network is shown in Figure 3, with both filtered poisons and non-
poisons displayed.

Specifically, Figure 3 shows a projected visualization in the feature space of
the fine tuning set in the target (blue) and base (green) classes.Following the
projection scheme used in [25], where the x-axis is the direction along the line
connecting the centroids of the target and base class features and the y-axis is
the component of the parameter vector (i.e. decision boundary) orthogonal to the
between-centroids vector, the deep features of the DPN92 network are projected
into a two-dimensional plane. The “x” markers denote poisons that are filtered
out by the defense and would have otherwise almost formed a convex polytope
around the target (blue triangle). The Deep k -NN acts with high specificity: all
the poisons are filtered, while only 2 outlying clean points in the target class (not
shown) are also filtered. No points in the base class are filtered.
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5.4 Limitations of the Deep k-NN Defense

The Deep k-NN defense exploits feature space clustering seen in feature collision
and convex polytope attacks. It may not be as effective if this initial condition
is not met. We view this as a strong and simple baseline defense for poisoning
attacks that shows the need for more sophisticated and adaptive attacks.

6 Ablation Studies and Best Practices

We now turn to ablation studies to gain insight into best practices for using the
Deep k -NN defense under realistic situations. All results are reported on the
convex polytope attack for CIFAR-10 as described in [35] on all 8 architectures
discussed previously. We specifically focus on the convex polytope attack method
since it is shown to act as a stronger poison on black-box threat models, and study
the transfer learning case to mimic the common practice of using pre-trained
feature-extractors trained on large datasets.
We again closely mimick the setup in [35] using the first 4800 images in each class
to train a model from scratch and then using the next 50 images of each class
(making a fine-tuning set size of 500) to fine-tune the model. The Adam optimizer
with a learning rate of 0.1 is used. In both studies, we assign frogs as the target
class and ships as the base class. The first 5 ship images from the fine-tuning
set are replaced with the 5 poisoned ships. Each set of 5 poisoned ships has an
associated target frog image that is neither in the training nor fine-tune set. We
use the standard CIFAR-10 test split to measure test accuracy.

6.1 Choosing a Value of k

In our first study, we vary the value of k used in the Deep k -NN defense. Since
dataset sizes vary, as well as the number of classes, we normalize k against the
number of data points per class. Specifically, we measure all metrics against a
normalized-k ratio, such that normalized-k = k/N where k is the number of
nearest neighbors considered by the Deep k -NN and N is the maximum number
of examples for any class in the fine-tune set.

As seen in Figure 4 (top left and middle left), the defense success rate and
MCC begin to reach maximum levels at normalized-k = 0.2, corresponding to
an (unnormalized) k of twice the number of poisons, k = 10 = 2npoison. This
confirms our intuition in Section 2: when k > 2npoison, poisons will be marked
anomalous since the poison class cannot be the majority label in the neighborhood
and is unlikely to be the plurality because the neighborhood usually only contains
two unique classes. Of course, the victim must set a value of k without knowledge
of the number of poisons employed by the attacker. Fortunately we observe that
defense success rate remains at 100% as the normalized-k ratio increases beyond
k = 0.2. Specifically, we see that after a normalized-k value greater than 1.0
(k = 50) (i.e. the situation where Deep k -NN considers more neighbors than
the per-class number of examples) the convex polytope attack is ineffective on
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Fig. 4: Ablation studies on the effect of k (left) and class imbalance (right). (Top
Left) Defense success rate increases to 100% for all models as normalized-k ratio
increases beyond 1.0 for all architectures. (Middle Left) Matthew’s correlation
coefficient is highest for all models when normalized-k ratio is between 0.4 and
2.0. (Bottom Left) Accuracy on the CIFAR-10 test split drops as normalized-k
value increases beyond 4 times the number of examples per class. (Top Right)
Defense and performance metrics under class imbalance. Defense success rate is
stabilized when the target class training examples are first replicated to match
the size of other classes. (Middle Right) Matthews correlation coefficient is also
less dependent on the size of the target class when data replication is on. (Bottom
Right) Test accuracy is highest when replicating the target examples to match
the size of other classes.

all models. However, there are limitations. Despite successfully detecting all
the poisons, an extremely large k could lead to adverse effects on model test
performance if too much clean data is removed (i.e. too many false positives).

To take both positives and negatives into account, we again invoke the MCC
metric in Figure 4 (middle left) to measure the trade-off between detecting
poisoned images and removing clean images. The maximum correlation coefficient
for all models occurs for normalized-k values in the range of 1 and 2. This makes
intuitive sense. On one hand, for k smaller than the class size, Deep k -NN could
fail to look within a large enough neighborhood around a data point to properly
judge its conformity. For example, a poison point may lie within a small, yet
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very tight cluster of other poison points of the same class and be improperly
marked as benign even though the poison cluster itself may lie within a much
larger cluster of clean target points. On the other hand, for k larger than 2 times
the class size, the neighborhood may be too large and contain too many data
points from a competing class. For example, the current target point may lie in
a cluster of other target points, but since the neighborhood is so large that it
contains all the target points as well as all the points in the nearby poison class
cluster, the current target point will be improperly marked as anomalous.

This upper threshold of normalized-k = 2 is confirmed by looking at test
accuracy performance in Figure 4 (bottom left). We note that performance is
highest in the normalized-k region from 0.2 to 2. It slightly decreases after a
normalized-k ratio of 2 and sharply decreases after 4. This shows that a model’s
ability to generalize suffers when too many legitimate data points are removed
under sufficiently large values of k. Based on these experiments, we recommend
using a normalized-k value between 1 and 2 for optimal success in defending
against poisoning attacks while minimizing false positives.

6.2 Dealing with Class Imbalance

In our second study, we consider the effectiveness of our defense on datasets with
an imbalanced number of examples per class. Given an imbalanced dataset, the
target class could be either the majority class or a minority class. The easiest
case for the defender is when the target is the majority class. In this case, so
long as k is set sufficiently large, there will be more than enough target training
examples to cause the poisons in their midst (in feature space) to be marked
as anomalous after running Deep k -NN . In this section, we will consider the
worst case, wherein the target class is the smallest minority class in the dataset.
Without applying any protocol to balance out the classes, there may not be
enough target class neighbors when running Deep k -NN to know that the poisons
clustered in their midst are anomalous.

A typical way to deal with imbalanced classes is to upweight the loss from
examples in the minority classes or, equivalently, sample examples from minority
classes at a higher rate that is inversely proportional to the fraction of the dataset
that their class occupies. We consider a simple and equivalent modification of the
latter protocol: given an imbalanced-class dataset, the examples in each class are
replicated by a factor of N/n, where n is the number of examples in that class
and N is the maximum number of examples in any class. After this operation,
the dataset will be larger, but once again balanced. We study the effect of this
data replication protocol on imbalanced classes. Specifically, we set the number
of examples in the target class (frog) to n < N while leaving the number of
examples in all other classes as N . We then replicate the frog examples by a
factor of N/n such that its size match the size of the other classes. Finally, we
plot the defense success rate against the class imbalance ratio n/N in Figure 4
(top right). The value of normalized-k is fixed at 2 (k = 100) for this experiment.

Figure 4 (top right, left panel) shows the defense success rate when no protocol
is applied prior to running Deep k -NN : the success rate suffers for class balance
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ratios below 0.7. When our data replication protocol is applied before the Deep
k -NN defense, the defense success rate is near perfect regardless of the class
balance ratio. These results show that our minority class replication protocol,
combined with the Deep k -NN defense, is very effective at removing poisons in
an imbalanced class dataset. Our replication-based balancing protocol normalizes
the number of examples considered by the Deep k -NN defense in feature space.

Next, we observe the MCC as a function of class imbalance in the absence
of any protocol in Figure 4 (middle right, left panel). When the ratio is small,
then the only thing that can hurt MCC is the misdetection of the targets as
being anomalous. On the other hand, when the ratio is large, there is no class
imbalance. MCC performs worst when there is a modest underrepresentation of
the target class. That is where both the targets and the poisons can cause false
negatives and false positives. When the replication protocol is applied in Figure
4 (middle right), the MCC experiences an improvement, although the relative
improvement is small. Interestingly, we observe that data replication stabilizes
the MCC against class imbalance; the MCC is essentially a flat curve in Figure 4
(middle right).

All models experience better test accuracy on the CIFAR-10 test set when
replicating target examples as shown in Figure 4 (bottom right). Despite only hav-
ing n unique points in feature space, replicating them boosts model performance
to be similar to the control experiment with a class balance ratio of 1.0. At lower
class balance values, replicating data in unbalanced classes improves test accuracy
by 8%. Based on these experiments, we recommend the protocol of replicating
images of underrepresented classes to match the maximum number of examples
in any particular class prior to running Deep k -NN . Defense success rate and
model generalizability are both improved and stabilized by this protocol.

7 Conclusion

In summary, we have demonstrated that the simple Deep k -NN approach pro-
vides an effective defense against clean-label poisoning attacks with minimal
degradation in model performance. With an appropriately selected value of k,
the Deep k -NN defense identifies virtually all poisons from two state-of-the-art
clean-label data poisoning attacks, while only filtering a small percentage of clean
images. The Deep k -NN defense outperforms other data poisoning baselines and
provides a strong benchmark on which to measure the efficacy of future defenses.

Acknowledgement

Dickerson and Gupta were supported in part by NSF CAREER Award IIS-
1846237, DARPA GARD HR00112020007, DARPA SI3-CMD S4761, DoD WHS
Award HQ003420F0035, and a Google Faculty Research Award. Goldstein and
his students were supported by the DARPA GARD and DARPA QED4RML
programs. Additional support was provided by the National Science Foundation
DMS division, and the JP Morgan Fellowship program.



Deep k -NN Defense Against Data Poisoning Attacks 15

References

1. Athalye, A., Carlini, N., Wagner, D.: Obfuscated gradients give a false sense
of security: Circumventing defenses to adversarial examples. arXiv preprint
arXiv:1802.00420 (2018) 4

2. Biggio, B., Corona, I., Maiorca, D., Nelson, B., Šrndić, N., Laskov, P., Giacinto, G.,
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