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Abstract

Vehicle re-identification, multi-camera vehicle track-
ing, and anomaly detection are essential for city-scale in-
telligent transportation systems. Both vehicle re-id and
multi-camera tracking are challenging due to variations in
aspect-ratio, occlusion, and orientation. Robust re-id and
tracking systems must consider small scale variations in a
vehicle’s appearance to accurately distinguish among vehi-
cles of the same make, model, and color. Scalability is crit-
ical for multi-camera systems, as the number of objects in a
scene is not known a-priori. Anomaly detection presents a
unique challenge due to a dearth of annotations and varied
video quality. In this paper, we address the task of vehicle
re-id by introducing an unsupervised excitation layer to en-
hance representation learning. We propose a multi-camera
tracking pipeline leveraging this re-id feature extractor to
compute a distance matrix and perform clustering to obtain
multi-camera vehicle trajectories. Lastly, we leverage back-
ground modeling techniques to localize anomalies such as
stalled vehicles and collisions. We show the effectiveness
of our proposed method on the NVIDIA AI City Challenge,
where we obtain 7th place out of 41 teams for the task of
vehicle re-id, with an mAP score of 66.68% and achieve
state-of-the-art results on the Vehicle-ID dataset. We also
obtain an IDF1 score of 12.45% on multi-camera vehicle
tracking, and an S4 score of 29.52% for task of anomaly
detection, ranking in the top 5 for both tracks.

1. Introduction

In recent years, there has been great demand to develop
automated and intelligent transportation systems for smart
cities that can facilitate dynamic traffic routing, traffic plan-
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ning, gathering vehicle-specific analytics like speed [17],
and traffic anomaly detection. Moreover, the development
of Deep Convolutional Neural Networks (DCNNs) has en-
abled the development of effective solutions to these chal-
lenges. For the past three years, NVIDIA AI City Chal-
lenge has pushed the boundaries of intelligent transporta-
tion systems. In this paper, we present a deep learning-
based algorithm for the task of vehicle re-identification (re-
id), and end-to-end pipelines for Multi-Camera Tracking
(MTC) and anomaly detection.

Vehicle re-id refers to the task of identifying all true
matches of a given vehicle identity in a large gallery set
composed of images of different vehicles that are cap-
tured under diverse conditions, e.g., different image quality,
orientation, weather condition and lightening. Therefore,
learning robust representations able to handle the aforemen-
tioned conditions is of great importance. At the same time,
a representation learning algorithm should be both real-time
and scalable to adapt to a large number of vehicles and traf-
fic cameras in the wild. To this end, we propose the fast and
accurate Excited Vehicle Re-identification (EVER) model
to meet these challenges. Recent work has shown the im-
portance of attending to local regions, vehicle key-points,
[13, 37] and part bounding boxes [9] to create robust deep
features. However, generating key-point annotations and
part bounding boxes is costly and will not scale across dif-
ferent domains. [14] has proposed a novel self-supervised
model to generate residual maps that act as pseudo-attention
maps. In this work, we take advantage of the residuals gen-
erated from [14] to excite intermediate feature maps during
the course of training and encourage the feature extraction
model to learn robust representations.

Multi-Camera Tracking aims to determine the position
of objects under consideration, at all times from video
streams taken by multiple cameras. The resulting multi-
camera trajectories enable applications including visual an-



alytics, suspicious activity and anomaly detection. In recent
years, the number of cameras in highways, parking lots and
intersections have increased dramatically, so it has become
paramount to automate MCT. MCT is a notoriously difficult
problem: Cameras are often placed far apart to reduce costs,
and their fields of view do not always overlap. This results
in extended periods of occlusion and large changes in view-
point and illumination across different fields of view. In
addition, the amount of data to process is enormous. In this
work, we present a system for MCT that leverages advances
in Single Camera Tracking [32,36,39] and our proposed ve-
hicle re-id model discussed above to obtain trajectories of
vehicles under different cameras.

Vehicle anomaly detection attempts to automatically lo-
calize stalled vehicles and collisions using existing traffic
camera infrastructure. Anomalous vehicles are uniquely
represented in both the foreground and background of a
scene. Parked vehicles are typically only represented in a
background model, while moving vehicles are only repre-
sented in the foreground model. Anomalous vehicles can
be characterized by their transitions between the foreground
and background. These transitions provide distinct oppor-
tunities to localize the spatio-temporal bounds of anoma-
lous vehicles. Our proposed method leverages this prop-
erty to identify a variety of anomalies, while also minimiz-
ing computational complexity. The proposed anomaly de-
tection algorithm first creates background and foreground
masks for each frame. We detect vehicles that are present
in the background image, and filter these proposals using a
pre-calculated road mask. It is important to note that this
method is unsupervised, and uses a Hybrid-Task Cascade
Network [3] pretrained on COCO [19] from the MMdetec-
tion framework [4]. We achieve an F1 score of 59.46%.

2. Related Works
Vehicle Re-identification: Successful Vehicle re-id re-
quires learning features robust to variations in orientation,
illumination and occlusion. Due to the expansive litera-
ture, we briefly review several recent methods on vehicle
re-identification.
Large-scale vehicle re-id datasets such as Vehicle-ID [21],
VeRi-776 [22], CityFlow-ReID [33] have made it possible
to learn global feature embeddings. However, these global
representations may fail to take into account the minute
details among visually similar vehicles of the same make,
model and color. In addition, the global appearance of a
given vehicle varies significantly as its viewpoint changes
depending on the camera. To alleviate this issue, several
methods [9, 13, 23, 37, 41] have been proposed to enhance
the discrimative capability of DCNNs by enforcing atten-
tion on local regions of a vehicle such as head and tail lights,
grill, bumpers and wheel patterns. Zhou et al. [44] learns
a viewpoint-aware representation for vehicle re-id through

view-dependent attention. [14] proposed a self-supervised
attention generation eliminates the need for extra annota-
tions for vehicle’s local regions. Also, [27,42] leverages ve-
hicle attribute classification to attend to informative regions,
e.g., predicting color and vehicle type to learn attribute-
based auxiliary features to assist the global representation.
Metric learning is widely used in an effort to make ro-
bust representations. [5, 16] propose various triplet losses
to carefully select hard triplets across different viewpoints
and vehicles to learn an improved appearance-robust repre-
sentation.
Multi-Object Tracking (MOT): Object tracking plays an
important role in solving many fundamental computer vi-
sion tasks. The success of object detectors [6,10,18,20,28]
has garnered significant interest in object tracking, result-
ing in many of robust single camera trackers for pedestrian
and vehicles. Sun et al. [31] posed MOT as a data associ-
ation problem and trained a Deep Affinity Network (DAN)
to obtain the association matrix in an end-to-end fashion.
DAN also accounts for multiple objects appearing and dis-
appearing between video frames. [35] extends the problem
of MOT to multi-object tracking and segmentation (MOTS).
Voigtlaender et al. in [35] annotate dense pixel-wise labels
for existing tracking datasets using a semi-automatic anno-
tation procedure and propose a new baseline which jointly
addresses detection, tracking and segmentation. [38] argues
that the two-stage (object detection followed by data asso-
ciation) tracking-by-detection paradigm suggested by most
modern MOT systems can lead to efficiency issues for real-
time MOT and hence proposed a real-time system that fa-
cilitates learning detection and appearance embeddings by
a shared model. They formulate the problem as a multi-
task learning setup and report the first near real-time MOT
system.
Multi-Camera Multi-Object Tracking: [30] learns good
features for multi-camera tracking and re-id with a DCNN
using an adaptive weighted triplet loss for training and a
new technique for hard-identity mining. [34] proposed a
unified three-layer hierarchical approach for solving track-
ing problems in multiple non-overlapping cameras. Similar
to our proposed pipeline, Tesfaye et al. in [34] first solve
within-camera tracking and then solve across-camera track-
ing by merging tracks of the same object in all cameras in
a simultaneous fashion. They use the constrained dominant
sets clustering (CDSC) technique, a parametrized version
of standard quadratic optimization to solve both the track-
ing tasks.
Anomaly Detection: Recent work in vehicle anomaly de-
tection has focused on detecting stopped vehicles through
a two-stage pipeline, first using background modeling to
identify vehicle proposals, and refining these proposals by
identifying regions of interest. [1] models each scene by
computing an moving-average image for each scene, de-
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Figure 1. SAVER [14] crudely reconstructs the input image using
a VAE. Subtracting the generated image from the input yields the
residual image in which salient regions are highlighted.

tects multi-scale vehicles through a perspective transforma-
tion, and regresses the start and end time of each anomaly
through a spatio-temporal information matrix. Similarly,
[26] approaches the task of background modeling by calcu-
lating an average image for each scene, and utilizes multi-
ple detectors optimized for various road conditions to local-
ize anomalous vehicles. [15] considers the spatio-temporal
consistency of tracklets to filter out moving vehicles and
refines these predictions by constructing binary masks to
highlight regions of interest. Our proposed method differs
from previous approaches, and leverages a Gaussian mix-
ture model (GMM) to simultaneously create background
and foreground representations and identify anomalous ve-
hicles in near real-time.

3. Vehicle Re-Identification
In this section we present our proposed approach, Ex-

cited Vehicle Re-identification (EVER), for the vehicle re-
id track of the challenge. EVER consists of three modules,
namely Self-Supervised Residual Generation, an Excitation
Layer and Feature Extraction.

3.1. Self-Supervised Residual Generation

Inspired by SAVER [14], which generates both a per im-
age coarse template of a given vehicle and a residual image
that carries vehicle-specific details critical for re-id, we take
advantage of the residual image to generate robust features.
The residual image containing minute details serves as a
pseudo-attention map. Figure 1 demonstrates how a resid-
ual image is obtained and how it highlights salient parts of
the vehicle.

3.2. Excitation Layer

Although SAVER uses the residuals to augment the input
image to a re-id model via convex combination, we propose
to only employ the residuals during training to excite the
intermediate feature maps and assist the feature extraction
model to learn more discriminative vehicle representations.
Intermediate feature map excitation has been shown to be
an effective approach for vehicle re-identification [9, 13]
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Figure 2. Intermediate feature maps are excited during training
with the help of the residual image. This is done by producing
an excitation that is a function of the residual image, channel-
averaged feature maps and α(t). Note that during inference this
layer acts as an identity function on the feature maps.

and object detection [7]. In particular, we follow the ex-
citation method proposed in [7] which is only applied sig-
nificantly during initial epochs of training and monotoni-
cally decreases the degree of excitation as training contin-
ues. This is done by computing the excitation factor α(t) as
follows:

α(t) = 0.5×
(
1 + cos(

πt

T
)

)
(1)

where t = 1 . . . T is the epoch number and T is the to-
tal number of training epochs. Figure 2 shows how inter-
mediate feature maps are excited while training the re-id
model. Subsequently, inference is only requires a forward
pass of the re-id model without generating residual image,
i.e., α(t) = 0, which ultimately reduces the computational
complexity of EVER. This makes our proposed approach
quite competitive for real-time applications.

3.3. Feature Extraction

For the purpose of discriminative deep feature extraction,
we chose the backbone architecture of ResNet-152 [11] for
our re-id model. Recently, [24] established a set of train-
ing techniques for the task of person re-id which is shown
to outperform many complicated methods and serves as a
strong baseline. These tricks have also been shown as ef-
fective for the task of vehicle re-id [14]. Therefore, as our
baseline, we adopt these tricks, i.e., Learning Rate Warm-
up, Random Erasing Augmentation, Label Smoothing, and
Batch Normalization Neck, for training the ResNet model



Table 1. Performance comparison between baseline and the proposed method on Large-scale Vehicle Datasets
Dataset

Model

CityFlow-ReID Veri-776 VehicleID

mAP(%) CMC(%) mAP(%) CMC(%) Small Medium Large
CMC(%) CMC(%) CMC(%)

@1 @5 @1 @5 @1 @5 @1 @5 @1 @5
Baseline 62.36 60.55 60.74 78.51 95.10 98.00 80.00 95.30 77.30 91.70 75.20 88.60
Proposed 66.68 65.40 65.68 79.90 95.90 98.20 84.50 96.40 79.70 94.70 77.40 91.80
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Figure 3. Overview of proposed EVER pipeline. Re-id model has
ResNet-152 architecture. During training features maps after Res-
1 and Res-2 blocks are excited with the help of residuals.

and compare it against similar settings with the addition of
the excitation layer, i.e. EVER. Figure 3 shows our pro-
posed pipeline. We optimized both baseline and EVER
models for the following batch hard triplet [12] and cross
entropy objectives:

Lt =
1

B

B∑
i=1

∑
a∈bi

[
γ + max

p∈P(a)
||xa − xp||2 − min

n∈N (a)
||xa − xn||2

]
+

(2)
and

Lc = −
1

N

N∑
i=1

(WT
c(xi)

xi + bi)− log

 C∑
j=1

eW
T
j xi+bj


(3)

In Eq. 2,B, bi, a, γ, P(a) andN (a) are the total number of
batches, ith batch, anchor sample, distance margin thresh-
old, positive and negative sample sets corresponding to a
given anchor respectively. Moreover, xa, xp, xn are the ex-
tracted features for anchor, positive and negative samples.
Batches are constructed in a way that they have exactly 4
instances of each ID used. In Eq. 3, xi refers to the ex-
tracted feature for an image belonging to class i. Further-
more, Wc(xi), bi are the classifier’s weight vector and bias
associated with class i respectively, and N and C repre-
sent the total number of samples and classes in the training
dataset.

3.4. Experiments

In this section, we test the effectiveness of our proposed
method. We compute the most commonly used re-id met-
rics, namely mean Average Precision (mAP) and Cumula-

tive Matched Cure (CMC) @1 and @5 for CityFlow-ReID,
Veri-776 and VehicleID benchmarks. Table 1 compares the
performance of both the baseline and EVER models. The
evaluation of CityFlow-ReID is done via an online server
intended for the Challenge. With the goal of achieving the
highest performance among participating teams, we applied
re-ranking method [43] on our model’s extracted features
from CityFlow-ReID dataset as a post-processing step. It
can be observed that for all the three datasets EVER model
significantly improves the re-id metrics and achieves the
state-of-the-art results on all three test splits of VehicleID
dataset. Table 2 shows how our model is ranked among top
performers of the challenge.

Table 2. Top 8 performers of 2020 NVIDIA AI City vehicle re-id
challenge

Team Name mAP (%)

Baidu-UTS 84.13
RuiYanAI 78.10

DMT 73.22
IOSB-VeRi 68.99
BestImage 66.84
BeBetter 66.83

UMD RC 66.68
Ainnovation 65.61

3.5. Run-time performance

As discussed in section 3.2, one of the main advantages
of EVER is its inference run-time. On a single GeForce
TITAN Xp card, on average it takes only 13.5 milliseconds
to process batches of size 128 and extract robust features.
This makes EVER a particularly fast model for real-time
applications.

4. Multi-Camera Tracking
In this section we describe our Multi-Camera Tracking

(MCT) pipeline. We start by describing various Single-
Camera Tracking (SCT) methods used in our work in Sec-
tion 4.1. We then describe our Multi-Camera Tracking
pipeline in Section 4.2. We conclude by describing all ex-
periments in Section 4.3.
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Figure 4. Proposed pipeline for Multi Camera Tracking of Vehicles

4.1. Single-Camera Tracking

Significant advances in object detection [6,10,18,20,28]
aided the emergence of the tracking-by-detection paradigm
[8, 40], which drastically improved the performance of var-
ious SCT methods for human and vehicle tracking. Such
methods leverage the highly accurate spatial localization ca-
pabilities of the detectors, along with well-embedded ap-
pearance and temporal relationships for computing similar-
ity measures to determine accurate object tracks.

4.1.1 Object Detection

In this work, we use Mask-RCNN object detector proposed
in [10]. Mask R-CNN network builds on the Faster R-
CNN [28] architecture with two major contributions. 1) Re-
placing the ROI Pooling module with a more accurate ROI
Align module and 2) Inserting an additional branch (other
than classification and bounding box heads) out of the ROI
Align module to compute the object mask for the task of
instance segmentation.

4.1.2 DeepSORT

Simple online and real-time tracking (SORT) [2] is a simple
framework that performs Kalman filtering in image space
and frame-by-frame data association using the Hungarian
method with an association metric that measures the bound-
ing box overlap. While achieving overall good performance
in tracking precision and accuracy, SORT returns a rela-
tively high number of identity switches. To improve the per-
formance of SORT, DeepSORT [39] was proposed to over-
come the issue by replacing the original association metric
with a metric that combines motion and appearance infor-
mation from a CNN pre-trained on a re-id dataset.

4.1.3 MOANA

Due to noisy detections and identity switches caused by
occlusion and similar appearance among nearby targets in
MOT systems, [32] proposed “Modeling of Object Appear-
ance by Normalized Adaptation”(MOANA) that learns on-
line a relatively long-term appearance change of each target.
The proposed model is compatible with any feature of fixed
dimension or its combination, whose learning rates are dy-
namically controlled by adaptive update and spatial weight-
ing schemes. To handle occlusion and nearby objects shar-
ing similar appearances, they design cross-matching and re-
id schemes based on the application of the proposed adap-
tive appearance models.

4.1.4 TrackletNet Tracker (TNT)

TNT [36] leverages appearance, temporal and interaction
cues together into a unified framework based on an undi-
rected graph model. The vertices in the graph model are
tracklets and the edges measure connectivity of two track-
lets. Under such a graphical representation, tracking can
be regarded as a clustering problem that groups the track-
lets into one big cluster. The tracklets are generated based
on IoU and appearance features similarity. When these cri-
teria become unreliable due to camera motion, they adopt
epipolar geometry to compensate and predict the position
of bounding boxes in the next frame. TNT is trained to
measure the continuity of two input tracklets by combining
both trajectory and appearance information.

4.2. Multi-Camera Tracking Pipeline

Our Multi-Camera tracking pipeline proceeds as follows

• Detect and track all vehicles in all the videos.

• Extract EVER re-id features from every track to use as
track descriptors



Table 3. Comparison of 3 SCT algorithms on 4 videos of 2 scenes in the validation set provided by the NVIDIA AI City Challenge 2020.

Tracking Method
S02 S05

c006 c007 c008 c009 c010 c016 c017 c018

DeepSORT 6.4 43.3 11.2 16.1 10.9 39.4 21.9 63.3
MOANA 8.7 51.8 15.7 21.4 11.2 38.6 34.6 67.8

TrackletNet 9.3 50.0 15.3 17.8 11.1 43.4 25.6 71.5

Table 4. Comparison of MCT algorithms on 4 videos of S02 in the
validation set of the 2020 NVIDIA AI City Challenge.

Tracking Method
S02

IDF1 IDP IDR

DeepSORT 44.13 63.57 33.80
MOANA 28.43 33.87 24.50

TrackletNet 33.19 41.12 27.83

Table 5. Top 8 performers of 2020 NVIDIA AI City multi-camera
tracking challenge

Team Name Score

INF 0.4585
XJTU-Alpha 0.4400
DukBaeGi 0.3483

EINI CQUPT 0.3411
UMD RC 0.1245

Albany NCCU 0.0620
Youtu 0.0452

SJTU yutinggao 0.0387

• Construct a distance matrix using appearance and tem-
poral cues

• Cluster all the tracks to obtain final multi-camera
tracks

The overall system is shown in Figure 4.
Single Camera Tracks: We use a SCT to get complete
vehicle tracks for every video.
Track Descriptors: Owing to the superior discriminative
ability of our proposed EVER (Section 3) system, we use
it to extract re-id features for N (N = 10 in this work)
randomly selected frames for every track in all the videos
to obtain the corresponding track descriptors. We use the
track descriptors to compute a distance matrix D which can
be used to merge tracks of vehicles under different cam-
eras. Since models for vehicle re-id are trained to identify
cars under different viewpoints and imaging conditions, it
is fitting to use a re-id model to merge tracks from different
cameras.
Distance matrix using Appearance and Temporal Cues:
Using the track descriptors, we compute a distance matrix

D = [dij ]
i,j=M
i,j=0 = 1 − cos(fi, fj), where cos(u, v) =

uT v
‖u‖‖v‖ is the cosine similarity between vectors u, v; fi, fj
are track i and j descriptors respectively and M is the to-
tal number of tracks from all the videos. Furthermore,
two adjacent tracks of the same car usually have similar-
ities in time. To incorporate this into the distance ma-
trix, we use a temporal IoU. Specifically, we scale the dis-
tance matrix by temporal overlap in the following manner:
dij = dij ∗ (1− t1∩t2

t1∪t2
).

Clustering: After computing the distance matrix as
described above, we perform clustering to obtain multi-
camera tracks. Since tracks from the same camera shouldn’t
be merged together, we set the corresponding values in the
distance matrix to a very high value to discourage the clus-
tering algorithm to place the tracks in the same cluster.
Since the number of clusters is not known beforehand, we
apply bottom up Agglomerative clustering method to merge
and obtain the multi camera tracks.

4.3. Experiments

Dataset: For all our experiments, we use the data provided
as a part of 2020 NVIDIA AI City Challenge. The dataset
contains 215.03 minutes of videos collected from 46 cam-
eras spanning 16 intersections in a mid-sized U.S. city. The
dataset is divided into 6 scenarios. 3 of the scenarios are
used for training, 2 are used for validation, and the remain-
ing one is for testing. In total, the dataset contains nearly
300K bounding boxes for 880 distinct annotated vehicle
identities. Only vehicles passing through at least 2 cameras
have been annotated.
Evaluation Metric: For MTMC tracking, the IDF1 score
[29] will be used to rank the performance of each tracker.
IDF1 measures the ratio of correctly identified detections
over the average number of ground-truth and computed de-
tections. Other popular evaluation measures adopted by
the MOT challenge [25], such as Multiple Object Track-
ing Accuracy (MOTA), Multiple Object Tracking Precision
(MOTP), mostly tracked targets (MT), and false alarm rate
(FAR) are also provided by the evaluation server. In Table 3
shows the comparison of the three SCT methods on scene 2
of the validation set. We use the IDF1 score for comparison
as this is the metric used for ranking various submissions in
the competition. In Table 4, we compare the multi-camera
tracking performance for the three SCT methods. In Table



5, we compare the results of top 8 submissions in the public
leaderboard of the 2020 NVIDIA AI City Challenge. For
this submission we use the TNT [36] SCT.

5. Anomaly Detection
In this section, we present our approach for near real-time
anomaly detection using statistical methods and out-of-the-
box detection and tracking algorithms. Our method lever-
age a Gaussian mixture model to model both background
and foreground instances, and uses a Hybrid Task Cascade
Network and SORT for object detection and tracking re-
spectively.

5.1. Foreground and Background Model

We use a Gaussian mixture based segmentation algorithm
proposed by [45] that adaptively selects an appropriate
number of Gaussian distributions for each pixel, and has
been shown to adapt well to scenes with varying illumi-
nation. For each frame, we generate both foreground and
background images. The Gaussian mixture model consid-
ers the last N frames when defining the background and
foreground regions. Through experimental evaluation, we
found that N = 120 adequately filters moving traffic, while
capturing anomalous vehicles transitioning from the fore-
ground to the background.

5.2. Vehicle Detection

Scale invariance and robustness to low resolution vehicle
images are important considerations when selecting a vehi-
cle detector for anomaly detection. We found that the Hy-
brid Task Cascade Network [3] is able to reliably localize
small vehicles at low detector thresholds. Since running the
Hybrid Task Cascade Network is computationally expen-
sive, we only run detections on every 30th frame, allowing
our pipeline to run in near real-time. Furthermore, we only
run the detector on background frames to reduce the number
of occlusions.

5.3. Tracking

We utilize SORT as defined in 4.1.2, Since we only cal-
culate detections on background frames, the SORT tracker
drops tracks and reassigns identities less frequently. We use
the length of the track as a proxy for the likelihood that a
given track is anomalous. We avoid using deep-learning
based trackers since it adds additional computational com-
plexity to our proposed pipeline, and will likely only pro-
vide marginal benefit since a re-id model trained on high
quality vehicle images will likely fail to generalize to this
domain.

5.4. Post-Processing

Aberrations such as aliasing and frozen frames can intro-
duce artifacts into all sub-systems in an anomaly detection

pipeline. To avoid false positive predictions due to poor
video quality, we detect when consecutive frames have a
per-pixel difference less than a fixed threshold, and ignore
predictions from that region of a video. Additionally, we
construct a road mask to highlight regions of interest and re-
move false positive detections by averaging the foreground
frames together.

5.5. Anomaly Detection Pipeline

Localizing anomalous vehicles in near real-time requires
robust background modeling, object detection, and light-
weight tracking. Anomalous vehicles, particularly stalled
vehicles, uniquely transition between the foreground and
background. A lack of supervised data leads to the use
of traditional computer vision and statistical methods. Fig-
ure 5 demonstrates our end-to-end pipeline. We approach
background modeling through the use of a Gaussian mix-
ture model. Since vehicle detection is an essential part in
localizing anomalies, we prioritized using a computation-
ally expensive deep learning model, but only run inference
on every 30th frame. We apply an online tracker to clus-
ter these detections, and apply several heuristics to remove
false positive results.
Figure 6 shows the qualitative performance of our system on
the 2020 NVIDIA AI City Challenge dataset. We note that
our proposed pipeline is able to accurately spatially local-
ize most anomalous vehicles. However, our pre-trained de-
tector often produces false positive results in night scenes,
and bad weather conditions. Additionally, our foreground
model is able to produce high quality road masks in busy
scenes, but creates sparse representations when vehicles in
a scene are sparse, or moving very slowly.

5.6. Experiments

Dataset: The NVIDIA AI City Challenge provides 200
fixed camera videos of unconstrained traffic scenes taken
from highways and intersections in Iowa. These 200 videos
are divided equally into training and testing sets. Each video
is approximately 15 minutes long. The dataset includes a
variety of illumination and weather conditions.
Evaluation Metric: Each anomaly detection pipeline is
evaluated on its ability to accurately localize the start time
of an anomaly. The S4 score is defined as F1 × (1 −
NRMSE), where the F1 score is the accuracy in selecting
videos containing anomalies, and NRMSE measures the ac-
curacy of the temporal bounds for each prediction. Table 6
shows how our method compares against other top perform-
ers in the challenge.

5.7. Run-time Performance

We compute the run-time of each module in our pro-
posed pipeline and show that end-to-end pipeline runs in
near real-time. We run each module five times on five
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Table 6. Top 8 performers in the 2020 NVIDIA AI City anomaly
detection challenge

Team Name S4 (%)

Firefly 96.95
SIS Lab 57.63

CETCVLAB 54.38
UMD RC 29.52

HappyLoner 29.09
Orange-Control 23.86

PapaNet 0.1703
Team Gaze NSU UAP 0.0958

videos each and average across each trial to normalize for
variations in a given scene. All modules run on a CPU, ex-
cept detector inference, which uses a single NVIDIA Titan
X (Pascal). Table 7 demonstrates that the primary bottle-
necks in our pipeline are the Gaussian mixture model and
detector. Our current pipeline can process approximately
18 FPS. We can significantly reduce processing time by
streaming relevant data to subsequent modules rather than
saving to disk, and use a lighter detector trained on more

domain specific data.

Table 7. Processing Time Analysis for 15-minute Video Clip

Component Processing Time (minutes)

GMM Segmentation 12.7
Object Detection 11.39

Road Mask Construction 1.13
Object Tracking 0.05

Proposal Filtering 4e-6
Proposal Refinement 4e-6

End-to-End 25.29

6. Conclusion

In this paper, we summarizes our contributions to the 2020
NVIDIA AI City Challenge for the tasks of vehicle re-
identification, multi-camera vehicle tracking, and anomaly
detection, and highlight the computational efficiency of our
proposed methods. As a byproduct, We achieve state-of-
the-art results on the VehicleID dataset using the proposed
EVER model and are ranked 7th out of 41 teams. We are
also ranked in the top 5 in public leaderboards for both
multi-camera tracking and anomaly detection.
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