
Towards Learning to Complete Anything in Lidar

Ayça Takmaz† 1 2 Cristiano Saltori 1 Neehar Peri 1 3 Tim Meinhardt 1

Riccardo de Lutio 1 Laura Leal-Taixé 1 Aljoša Ošep 1

1NVIDIA 2ETH Zurich 3Carnegie Mellon University
research.nvidia.com/labs/dvl/projects/complete-anything-lidar

Figure 1. Learning to Complete Anything in Lidar. Given a sparse Lidar point cloud, CAL (Complete Anything in Lidar) localizes,
reconstructs, and, optionally, recognizes objects in a zero-shot fashion. By providing a semantic class vocabulary of specific object classes
at test time, CAL can be prompted to perform Semantic Scene Completion (SSC), Panoptic Scene Completion (PSC), or (amodal) 3D
Object Detection. Note that CAL only takes a single Lidar scan as input; RGB images are shown for visualization purposes only.

Abstract

We propose CAL (Complete Anything in Lidar)
for Lidar-based shape-completion in-the-wild.
This is closely related to Lidar-based seman-
tic/panoptic scene completion. However, con-
temporary methods can only complete and rec-
ognize objects from a closed vocabulary labeled
in existing Lidar datasets. Different to that, our
zero-shot approach leverages the temporal con-
text from multi-modal sensor sequences to mine
object shapes and semantic features of observed
objects. These are then distilled into a Lidar-only
instance-level completion and recognition model.
Although we only mine partial shape completions,
we find that our distilled model learns to infer full
object shapes from multiple such partial observa-
tions across the dataset. We show that our model

†Work done during a research internship at NVIDIA.

can be prompted on standard benchmarks for Se-
mantic and Panoptic Scene Completion, localize
objects as (amodal) 3D bounding boxes, and rec-
ognize objects beyond fixed class vocabularies.

1. Introduction
Understanding the complete spatial layout and semantics of
objects and scene geometry from raw sensor data is crucial
for embodied 3D perception and safe navigation.

Contemporary methods for Lidar semantic (Behley et al.,
2019) and instance (Behley et al., 2021) segmentation only
group and classify points directly observable from the Lidar
sensor. In contrast, methods for (amodal) 3D object detec-
tion (Zhou & Tuzel, 2018), Semantic Scene Completion
(SSC) (Behley et al., 2019; Li et al., 2024) and Panoptic
Scene Completion (PSC) (Cao et al., 2024) learn to com-
plete objects and scenes directly from labeled sensor data
to predict occluded regions not directly observable in Lidar.

1

ar
X

iv
:2

50
4.

12
26

4v
1

 [
cs

.C
V

]
 1

6
A

pr
 2

02
5

https://research.nvidia.com/labs/dvl/projects/complete-anything-lidar

Towards Learning to Complete Anything in Lidar

However, prior work can only localize and complete around
20 classes labeled in existing Lidar datasets. This is far be-
low the label diversity and scale compared to state-of-the-art
image-based datasets (Kirillov et al., 2023).

Mining shape priors from unlabeled data. Unlike prior
work, we extend beyond typical fixed taxonomies by learn-
ing object shape priors from temporal context in Lidar se-
quences. However, this requires (i) segmenting objects and
regions in space and time, followed by (ii) temporal ag-
gregation to obtain 3D shape estimates. Precisely tracking
objects is crucial for 3D reconstruction: tracking errors like
identity switches can lead to erroneous or incomplete geom-
etry. Even when objects are correctly localized in space and
time, object-level temporal registration is challenging (Groß
et al., 2019; Seidenschwarz et al., 2024; Huang et al., 2022).

To address these challenges, we leverage image (Kirillov
et al., 2023) and video (Ravi et al., 2024) segmentation
foundation models to localize and track objects in video.
Such foundation models are already trained on diverse data
and are capable of accurately segmenting any object in a
video. After segmenting and tracking all objects, we lift
each masklet (i.e. spatio-temporal object masks) to Lidar
space and integrate them over time using a calibrated multi-
modal sensor setup with known ego-vehicle poses (Behley
et al., 2019). To enable zero-shot recognition, we addition-
ally obtain CLIP (Radford et al., 2021) features for each
masklet averaged per-timestep, effectively connecting the
completed shapes with semantic information. Objects may
be only partially completed, and not all objects are static –
however, in practice, we learn to fully complete static and
dynamic objects from such partial observations.

Learning to complete anything. We utilize these mined
pseudo-label pairs to train an instance-level completion net-
work. Following prior methods for SSC (Behley et al.,
2019), we learn scene-level occupancy in a fixed-size
voxel grid using a sparse generative encoder-decoder net-
work (Cao et al., 2024). To segment individual object in-
stances, we train a decoder (Cao et al., 2024), which predicts
instance masks in the (occupied) voxel space in a class-
agnostic fashion. Finally, we regress a CLIP token (Najibi
et al., 2023) for each predicted instance to capture object se-
mantics in a fixed-dimensional embedding vector, enabling
zero-shot prompting at test time.

We empirically demonstrate that our method is versatile and
can be used for semantic (Behley et al., 2019; Li et al., 2024),
and panoptic scene completion (Cao et al., 2024) (Fig. 1,
1⃝) via test-time prompts. Moreover, we qualitatively show

that our approach can localize objects as 3D bounding boxes
(Fig. 1, 2⃝) and demonstrate that our method can recognize
and complete arbitrary objects not captured in canonical
semantic vocabularies (Fig. 1, 3⃝).

Contributions. We propose the first method for Zero-Shot
Lidar Panoptic Scene Completion. Our approach is enabled
by our pseudo-labeling engine, which mines 3D shape priors
from unlabeled Lidar sequences using 2D vision foundation
models. We show that such pseudo-labels can be used to
train a model for scene-scale object-level completion from
noisy and partial pseudo-labels.

2. Related Work
In the following section, we discuss prior work with a focus
on Lidar-based scene understanding, scene completion, and
generative modeling.

Lidar-based segmentation methods for semantic (Behley
et al., 2019) and panoptic (Behley et al., 2021) segmenta-
tion classify directly observed Lidar points into pre-defined
semantic classes and identify individual instances. While
most existing methods rely on manually labeled datasets
(Behley et al., 2019; 2021; Fong et al., 2021), several works
(Unal et al., 2022; Li et al., 2023a) address weakly super-
vised segmentation to reduce labeling efforts. More recent
works embrace foundation models for open-vocabulary auto-
labeling. Liu et al. (2023) use contrastive pre-training to
distill vision-foundation model features for label-efficient
segmentation. Osep et al. (2024) distill vision foundation
models into a zero-shot Lidar panoptic segmentation model.
Peng et al. (2023); Xiao et al. (2024) similarly distill 2D
foundational knowledge into 3D but rely on Lidar and cam-
era inputs to classify Lidar/RGB-D points at test-time. Such
modal scene recognition only localizes the visible portion of
objects and is therefore sensitive to signal sparsity and (self)
occlusions. In contrast, our method addresses zero-shot
completion of shapes in Lidar, which comes with distinct
challenges beyond the scope of segmention.

Lidar-based object detection methods localize objects as
oriented 3D bounding boxes (Petrovskaya & Thrun, 2009;
Yin et al., 2021; Liu et al., 2021; Ma et al., 2023; Peri et al.,
2023a;b), including regions not directly observed by the
Lidar sensor. As these methods require manually labeled
3D boxes, recent work (Najibi et al., 2022; 2023; Zhang
et al., 2023; Seidenschwarz et al., 2024; Khurana et al.,
2024) utilize foundational priors and temporal context to
automatically obtain amodal 3D boxes for moving objects.
In contrast, our work is not limited to the subset of thing
classes observed in a state of motion – we learn to segment
and complete objects for any category.

Object-level shape completion from partially observed
scans (e.g., a single viewpoint) is commonly addressed us-
ing data-driven methods that rely on object shape priors
(Yuan et al., 2018; Dai et al., 2017b; Mescheder et al., 2019;
Park et al., 2019; Mittal et al., 2022). Prior art utilizes gener-

2

Towards Learning to Complete Anything in Lidar

Figure 2. Pseudo-labeling engine. Given a calibrated RGB camera and Lidar sensor, 1⃝ we use video-object segmentation models (Ravi
et al., 2024) to localize object instances in video, 2⃝ pseudo-label the Lidar point clouds over time, and 3⃝ generate completed voxelized
object representations, each enriched with a per-instance CLIP feature extracted from RGB images. In 4⃝, we accumulate 360◦ Lidar
scans to obtain full-scene binary occupancy, used for refining the aggregated pseudo-labels 3⃝ via a CRF-guided label refinement process
5⃝. As output 6⃝, our method pairs each sparse and incomplete Lidar scan with pseudo-labels for object-level scene completion (top-right)

and CLIP features, which are temporally aggregated by averaging per-instance features across the sequence. These CLIP features enable
zero-shot recognition via text queries (bottom-right). Mined pseudo-label pairs are then used to train the CAL model.

ative models such as adversarial networks (Wu et al., 2016;
Achlioptas et al., 2018), auto-encoders (Wu et al., 2015; Dai
et al., 2017b; Yuan et al., 2018), diffusion models (Vahdat
et al., 2022; Nam et al., 2022; Ntavelis et al., 2023; Jun
& Nichol, 2023), and vector-quantized auto-encoders (Van
Den Oord et al., 2017; Mittal et al., 2022). Such models
are commonly trained on datasets that provide partial obser-
vations and corresponding 3D meshes (Chang et al., 2015;
Deitke et al., 2023), or via data augmentations (Dai et al.,
2017b; Mittal et al., 2021). In contrast, we address object
and scene-level completion via auto-labeling.

Scene-level completion methods typically represent la-
beled, pre-registered scans of static environments using
dense voxel grids, which hinders scalability to large scenes
(Dai et al., 2017a; 2018). To address this, Dai et al. (2020)
utilize sparse encoders in conjunction with coarse-to-fine
generation in a feed-forward manner, while Ren et al. (2024)
perform diffusion in the latent space. This differs from
streaming robot perception, where range sensors provide
sparse measurements (Song et al., 2017; Behley et al., 2019;
Li et al., 2024) and methods must infer dense scene geom-
etry in the presence of dynamic objects. Li et al. (2023b)
explore implicit scene completion of sparse Lidar data,
whereas Nunes et al. (2024) explore diffusion-based com-
pletion of Lidar point clouds. Prior work addressing se-
mantic scene completion (Xia et al., 2023; Liang et al.,
2024; Roldao et al., 2020; Rist et al., 2021; Mei et al., 2023)
requires labeled datasets (which are expensive to curate)
(Behley et al., 2019; Li et al., 2024; Tian et al., 2024) with
amodal completion data.

Cao et al. (2024) jointly tackle SSC and instance segmen-
tation (i.e., PSC) using a generative encoder-decoder in
conjunction with a transformer decoder that interacts with

occupied voxels to estimate a set of segmentation masks for
each (learned) query vector. Although our model is inspired
by Cao et al. (2024), our work goes beyond fixed class
taxonomies, and does not require 3D datasets with manual
labels. Our work addresses these limitations by extracting
geometry from temporal cues and open-vocabulary seman-
tics from foundational priors. Finally, open-vocabulary SSC
from multi-view images has been explored in Vobecky et al.
(2023); Zheng et al. (2024). To the best of our knowledge,
no prior work combines open-vocabulary, instance-level,
and LiDAR-based scene completion in a single framework.

3. Method
We describe our task formulation and method CAL (Com-
plete Anything in Lidar) for zero-shot completion of objects
in a sparse Lidar scan. CAL has two key components: (i)
a pseudo-labeling engine (Fig. 2) that mines pairs of par-
tially observed point clouds with completed 3D shapes and
CLIP features (Radford et al., 2021), and (ii) a model for
zero-shot, class-agnostic object completion (Fig. 3).

Preliminary: Panoptic Scene Completion. Semantic
Scene Completion (SSC) (Behley et al., 2019) assumes
input in the form of a single Lidar point cloud P =
{pn}Nn=1, pn ∈ R4, consisting of spatial positions and inten-
sity channel. Given a set of semantic classes (known at train
time and accompanied by labeled instances), the task is to
estimate per-class scene occupancy. In addition, Panoptic
Scene Completion (PSC) (Cao et al., 2024) requires assign-
ing K instance identities to semantic classes designated as
thing classes. Object shapes are localized and parametrized
via a per-object occupancy function Ok : R4 → N3, k ≤ K,
defined in a regular voxel grid G ⊂ N3 in a fixed-size bound-
ing volume in front of the Lidar sensor.

3

Towards Learning to Complete Anything in Lidar

Complete Anything. Our problem setting follows the gen-
eral setting for PSC. However, particular to our setting,
semantic information is not provided during training. Our
method takes a semantic vocabulary consisting of free-form
semantic class descriptions only at test time. We address this
challenge by performing class-agnostic segmentation and
reconstruction of objects, optionally followed by zero-shot
classification, that assigns each instance to a semantic class
in the specified test-time vocabulary.

3.1. Mining 3D Shape Priors From Unlabeled Data

Overview. Given a Lidar scan P with partial scene obser-
vations, our shape-mining pseudo-labeler creates an occu-
pancy grid O where each voxel can be empty, unlabeled, or
assigned to an observed instance. Each instance is repre-
sented by a 3D occupancy grid Ok, accumulating per-point
instance observations over time. Additionally, each Ok is
accompanied by a semantic CLIP feature fk, that connects
instance geometry with vision-language features (Radford
et al., 2021). We depict our approach for mining shape
priors in Fig. 2.

Key challenge. Our approach stems from the observa-
tion that object shapes can be inferred from temporal con-
text while driving down the street. However, obtaining
per-object shape priors requires precise object localization,
tracking and accurate object-level registration – a challeng-
ing problem sensitive to registration errors and drift (Huang
et al., 2022; Seidenschwarz et al., 2024; Groß et al., 2019).

Video-object localization 1⃝. To this end, we utilize seg-
mentation foundation models (Kirillov et al., 2023; Ravi
et al., 2024; Radford et al., 2021), trained on a large amount
of diverse visual data and proven capable of segmenting ar-
bitrary objects. Given a video sequence v consisting of RGB
images It ∈ RW×H×3, we first segment images with SAM
(Kirillov et al., 2023) using grid-based prompting and obtain
a set of 2D mask proposals m2D

t,k ∈ {0, 1}W×H , 0 ≤ k <
K, that represent the set of ≤ K objects in the reference
image, observed at time t. We propagate the masks from
the reference frame at time t to the frames within the given
temporal window [t−Tbw, t+Tfw] using video-object seg-
mentation model SAM 2 (Ravi et al., 2024). Specifically, we
perform backward propagation for Tbw frames and forward
propagation for Tfw frames, with a stride of w. This allows
us to integrate observations from various viewpoints. The
output is a set of ≤ K class-agnostic masklets, providing
temporal instance association in the video v.

Semantic feature aggregation. We compute per-instance
CLIP features following Ding et al. (2023), and aggregate
(Takmaz et al., 2023) them in the temporal domain using
mask information to obtain multi-view vision-language fea-
tures. These features are then normalized and averaged to

obtain fk ∈ RF for each accumulated shape k in the refer-
ence frame t, where F is the CLIP embedding dimension.

Lift and refine 2⃝. For each frame in the temporal window,
we backproject each 2D mask m2D

t,k to the Lidar coordinate
frame using the provided camera-to-Lidar transformations
and obtain 3D masks m3D

t,k ∈ {0, 1}X×Y×Z , 0 ≤ k < K
for each instance k. These masks may suffer from projec-
tion artifacts due to imperfect calibration and rolling shutter.
We follow the single-frame mask refinement procedure pro-
posed by Osep et al. (2024) for precise localization (details
in Appx. A.3).

Temporal aggregation 3⃝, 4⃝. Once masks m3D
t,k are lo-

calized in the Lidar sequence, we project them into the
reference coordinate frame using known ego-poses and ag-
gregate them over time to obtain densified masks m3D

k . We
obtain per-instance occupancy Ok by voxelizing each m3D

k

and assign instance indices via majority voting. Relying
solely on Ok provides limited guidance. This is due to (i)
image-based object localization providing only partial cov-
erage of Lidar scans where unseen regions (e.g., the back
of a car) lack completion signals and (ii) errors in mask
localization and tracking. We complement Ok with a binary
occupancy signal obtained by directly accumulating 360◦

Lidar points (Fig. 2 4⃝) to improve label coverage (Tab. 5).

CRF refinement 5⃝. To further improve label coverage,
we refine instance masks 3⃝ using Conditional Random
Fields (CRF) (Krähenbühl & Koltun, 2011), constructed
over binary occupancy 4⃝. We analyze the benefits of this
CRF refinement (whose final output is illustrated in Fig. 2
6⃝) in Tab. 3 and report further details in the Appx. A.1.

3.2. Learning To Complete Objects

Overview. CAL takes a single input Lidar scan P , provid-
ing sparse and incomplete observations of scene geometry
(Fig. 4, 1st col.), and outputs a set of completed object in-
stances (Fig. 4, 2nd col.), represented via voxel occupancy
and instance IDs. Each instance ID is accompanied by a
predicted semantic feature that allows us to match instance
semantic features with the class vocabulary provided at
test time (Fig. 4, 3rd col.). Different from prior art (Cao
et al., 2024), we do not differentiate between stuff and thing
classes, i.e., cars, road, and (individual) bushes are treated
as individual instances. CAL overview is provided in Fig. 3.

Model architecture. We follow Cao et al. (2024) and
employ a sparse-generative 3D U-Net (Dai et al., 2018)
architecture that estimates scene-level occupancy, and a
Transformer instance decoder (Cheng et al., 2022) operating
directly on occupied voxels. The backbone consists of a
sparse feature encoder (●) (Choy et al., 2019) followed by a
dense 3D convolutional block (●). The multi-scale genera-

4

Towards Learning to Complete Anything in Lidar

Figure 3. CAL model architecture and training pipeline. The
backbone consists of a sparse encoder and a dense 3D convolu-
tional block. We estimate scene-level occupancy using a multi-
scale sparse generative decoder that consists of decoder blocks D,
two occupancy heads Bo and Bs, and a pseudo-semantic head (S)
at each scale L. The Transformer decoder then predicts segmenta-
tion masks over the completed scene and regresses CLIP features.

tive decoder (●) uses three decoding blocks D1:L estimating
occupancy at three different resolution levels L ∈ {1, 2, 4}.
The input to the Transformer decoder (●) is a set of learn-
able queries that interact with the multi-resolution features
learned by the generative decoder in voxel space. To ac-
commodate zero-shot recognition, we estimate an object-
ness score, a segmentation mask (parametrized in the voxel
space), and CLIP features (●) for each query.

Generative decoder, completion heads & CLIP feature
prototypes. The key component for accurately complet-
ing the scene is the sparse generative decoder (Dai et al.,
2018; Cao et al., 2024), comprising three decoder blocks
interleaved with pruning layers to maintain sparsity. Each
decoder block D1:L provides features at scale L, used by a
binary occupancy head Bo to predict scene occupancy at
that scale. Training the current model with pseudo-labels
presents two key challenges: partially completed pseudo-
labels bias training toward well-covered regions, and the
lack of a semantic grouping of instances hinders the learn-
ing of shape priors. We address the first issue by guiding
Bo with binary occupancy (Fig. 2 4⃝). We address the sec-
ond challenge by quantizing instance CLIP features into C
pseudo-prototypes with clustering and introduce an addi-
tional (pseudo) semantic head S to predict a prototype class
for each occupied voxel. We use prototype predictions only
during training (additional details in Appx. B.2) – during
test-time, we only use the predicted CLIP features for zero-
shot recognition. Additionally, we add a second occupancy
head Bs, which processes per-class logits from S and learns
to convert them into a binary occupancy prediction. We find
that Bs further regularizes our training.

Training. We train our network jointly for (i) binary oc-

cupancy completion, (ii) class-agnostic instance mask pre-
diction, (iii) CLIP feature distillation, and (iv) per-voxel
prototype assignment. During each training iteration, the
generative decoder produces coarse-to-fine voxel grids for
each scale L, supervised with a binary occupancy loss
(Locc: binary-cross entropy wrt. aggregated binary oc-
cupancy labels) and prototype classification loss (Lprot:
cross-entropy and Lovasz wrt. pseudo-category labels from
CLIP prototype assignments). The transformer decoder
produces instance masks and CLIP features, supervised
by the mask-loss (Lmask: binary-cross entropy and Dice
loss) and the feature distillation loss (LCLIP: cosine sim-
ilarity loss). For Lmask, we perform Hungarian matching
to pair predicted and pseudo-labeled instance masks. We
ignore unlabeled voxels for Hungarian matching, and also
for computing Lmask, and Lprot to ensure the network is
not penalized for predictions outside the pseudo-labeled
area. The final training objective is the weighted sum
of {Locc,Lprot,LCLIP,Lmask} with weighting parameters
specified as {λocc, λprot, λCLIP, λmask}. Further imple-
mentation details are provided in Appx. B.3.

Inference. Given a Lidar point cloud as input, CAL pro-
duces a set of object instance masks over the voxel grid and
a CLIP feature for each predicted instance. We suppress
small overlapping masks with the overlap threshold τovr
and filter low confidence masks with the objectness thresh-
old τobj (Appx. B.2). We use the predicted CLIP features
to classify each query in a zero-shot manner. Using the
CLIP text encoder, we encode the semantic vocabulary, i.e.,
a set of text prompts (additional details in Appx. C.1). We
then obtain a posterior over the specified vocabulary for
each query by computing the cosine similarity between a
predicted CLIP feature and encoded text descriptions.

4. Experiments
We evaluate CAL’s ability to localize and complete the full
3D extent of instances from a Lidar point cloud given a class
vocabulary prompt at test time. Key details on the experi-
mental setup (Sec. 4.1), benchmark comparisons (Sec. 4.2),
and ablations on design choices (Sec. 4.3- 4.3) are discussed
below, with further implementation details in the Appendix.

4.1. Experimental Setup

Task. We quantitatively assess CAL’s zero-shot completion
and recognition performance on Semantic Scene Comple-
tion (SSC) (Behley et al., 2019) and Panoptic Scene Com-
pletion (PSC) (Cao et al., 2024) benchmarks. SSC assumes
a single Lidar point cloud as input and requires per-voxel
occupancy estimation and semantic classification of the
occupied voxels. PSC additionally requires assigning iden-
tities to instances of thing classes. Given a class vocabulary

5

Towards Learning to Complete Anything in Lidar

Input Scan Completion + Masks Completion + Prompting Ground Truth

Figure 4. Qualitative results on SemanticKITTI. Given a single Lidar scan (1st col.), CAL completes object-level observations as a set
of masks over the voxel grid (2nd col.) and predicts a CLIP feature for each mask. We can prompt with any semantic class vocabulary and
obtain panoptic and semantic scene completion (3rd col.) results. Our model predicts shape priors for both thing (e.g., ‘car’, ‘cyclist’) and
stuff classes (e.g. ‘vegetation’, ‘road’) and can correctly predict the intersection geometry in 4th row, despite limited direct evidence.

Table 1. Panoptic Scene Completion. We compare CAL against LMSCNet (Roldao et al., 2020) + MaskPLS (Marcuzzi et al., 2023),
JS3CNet (Yan et al., 2021) + MaskPLS, SCPNet (Xia et al., 2023) + MaskPLS, and PaSCo (Cao et al., 2024) (M=1 and Ensemble).

Semantic KITTI (Behley et al., 2019) (val set) SSCBench-KITTI360 (Li et al., 2024) (test set)
All Thing Stuff All Thing Stuff

Method PQ†↑ PQ↑ SQ RQ PQ SQ RQ PQ SQ RQ mIoU↑ PQ†↑ PQ↑ SQ RQ PQ SQ RQ PQ SQ RQ mIoU↑

Fully supervised
LMSCNet + MaskPLS 13.81 4.17 36.13 6.82 1.62 29.87 2.68 6.02 40.69 9.82 17.02 12.76 4.14 26.52 6.45 0.88 20.41 1.58 5.78 29.58 8.88 15.10
JS3CNet + MaskPLS 18.41 6.85 41.90 11.34 4.18 43.10 7.22 8.79 41.03 14.34 22.70 16.42 6.79 51.16 10.71 3.36 48.41 5.83 8.51 52.54 13.15 21.31
SCPNet + MaskPLS 19.39 8.59 49.49 13.69 4.88 46.41 7.70 11.30 51.73 18.04 22.44 16.54 6.14 51.18 10.15 4.23 48.46 7.05 7.09 52.55 11.70 21.47
PaSCo (M=1) 26.49 15.36 54.15 23.65 12.33 47.42 18.78 17.55 59.05 27.19 28.22 19.53 9.91 58.81 15.40 3.46 57.72 6.10 13.14 59.35 20.05 21.17
PaSCo (Ensemble) 31.42 16.51 54.25 25.13 13.71 48.07 20.68 18.54 58.74 28.38 30.11 26.29 10.92 56.10 17.09 4.88 57.53 8.48 13.94 55.39 21.39 22.39

Zero-shot
CAL (SO) 17.12 6.27 43.40 10.06 3.48 44.39 5.65 8.30 42.67 13.27 20.71 12.56 1.71 33.18 3.10 2.05 45.57 3.76 1.54 26.99 2.76 13.34
CAL (ZS) 13.12 5.26 27.45 8.44 2.42 22.79 3.89 7.33 30.84 11.76 13.09 8.57 1.46 21.01 2.63 1.39 27.62 2.54 1.49 17.81 2.68 8.49

for evaluation, we prompt our method at inference time to
perform these tasks in a zero-shot manner.

Datasets and benchmarks. We follow prior work (Cao
et al., 2024) and evaluate CAL on two datasets that provide
semantic and instance-level labels for PSC: SSCBench-
KITTI360 (Li et al., 2024; Liao et al., 2021) and Se-
manticKITTI (Behley et al., 2019; Geiger et al., 2012; 2013)
whose instance-level labels are provided by Cao et al. (2024).
The hyperparameters used by our pseudo-labeling engine
for each dataset are given in Appx. A, and additional details
are provided in Appx. C.1.

Zero-shot evaluation. We evaluate our model’s segmen-
tation, completion, and recognition capabilities by specify-
ing target classes (defined in each respective dataset) via
prompts at test time (additional details in Appx. C.1) and
assign labels based on cosine similarity between encoded
text prompts and the predicted CLIP features fk. While

our model is trained to localize and classify a larger set of
objects (i.e., objects that appear in the Lidar data and are
localized by vision-based segmentation foundation models,
Kirillov et al. (2023)), we utilize labeled instances as a proxy
for assessing zero-shot (ZS) shape completion and recog-
nition on classes that are labeled. In contrast to baselines
trained on ground-truth (GT) data, we use GT labels solely
for evaluation and ablations.

Metrics. We assess SSC performance using mean
Intersection-over-Union (mIoU). For PSC, we follow Cao
et al. (2024) and use the Panoptic Quality (PQ = SQ ×
RQ), Segmentation Quality (SQ), and Recognition Quality
(RQ) metrics (Kirillov et al., 2019), evaluated on the full
voxel grid. Similar to Cao et al. (2024), we focus on the
modified variant of PQ, i.e. PQ† (Behley et al., 2021),
and remove the minimum 0.5 IoU overlap requirement for
stuff classes, as this can be too restrictive for regions that
do not have well-defined boundaries. As PQ mixes seg-

6

Towards Learning to Complete Anything in Lidar

Figure 5. Completion and amodal detection on KITTI-360.
Given an input Lidar scan (left), CAL outputs a set of completed
object shapes (middle). We visualize recognized objects (right) for
queries ‘vehicle’ (top), ‘car’ (middle) and ‘tree’ (bottom), and fit
3D bounding boxes to the identified object instances, demonstrat-
ing the zero-shot amodal 3D object detection ability of CAL.

mentation and recognition accuracy, we additionally report
semantic oracle (SO) results (similar to Osep et al. (2024))
by assigning each mask to the GT semantic label based on a
per-voxel majority vote. This allows us to further decouple
completion performance and semantic understanding.

4.2. Experimental results

First, we compare CAL with four fully supervised baselines
in Tab. 1. To the best of our knowledge, our method is the
first method to address zero-shot Lidar panoptic scene com-
pletion; therefore, we also construct two zero-shot baselines,
whose results are reported in Tab. 2. Additionally, we report
qualitative results on SemanticKITTI in Fig. 4 and Fig. 6,
and on SSCBench-KITTI360 in Fig. 5 and Appx. Fig. 7.

Comparison to supervised baselines. Tab. 1 reports
CAL results for SSC and PSC on the SemanticKITTI and
SSCBench-KITTI360 datasets. We also compare with four
fully supervised baselines. We report two versions of the
PaSCo baseline, the current state-of-the-art method for fully
supervised SSC/PSC: single network (M = 1), whose set-
tings are consistent with ours, and the ensembled version
(Ensemble), reported only for completeness. Fully super-
vised baselines have a clear advantage over CAL as they
train on closed-set, noise-free annotations with full scene
coverage. Nonetheless, even early supervised SSC base-
lines (Behley et al., 2019) struggle, often achieving less
than 15 mIoU, outlining the difficulty of the task even in

1The SSC baselines reported in (Behley et al., 2019) achieve
9.53 mIoU (SSCNet (Song et al., 2017)), 9.54 mIoU (TS3D (Gar-
bade et al., 2019)), and 17.70 mIoU (w/ SATNet (Liu et al., 2018))

Table 2. Panoptic scene completion results with zero-shot base-
lines. We compare CAL against the zero-shot baselines we con-
struct: LODE (Li et al., 2023b) + SAL (Osep et al., 2024) and
LiDiff (Nunes et al., 2024) + SAL (Osep et al., 2024). Results
reported on the SemanticKITTI dataset.

All Thing Stuff SSC
Method PQ†↑ PQ↑ SQ RQ PQ SQ RQ PQ SQ RQ mIoU↑

LODE + SAL 7.74 1.96 11.12 3.54 0.00 6.36 0.00 3.39 14.59 6.11 8.12
LiDiff + SAL 7.35 0.36 23.95 0.65 0.22 34.81 0.40 0.46 16.06 0.83 7.38
CAL (ZS) 13.12 5.26 27.45 8.44 2.42 22.79 3.89 7.33 30.84 11.76 13.09

the supervised setting1. Remarkably, we reach ∼ 50%
of PaSCo on SemanticKITTI, and ∼ 40% of PaSCo on
SSCBench-KITTI360 in the zero-shot (ZS) setting, while
even achieving comparable results to fully-supervised base-
line LMSCNet + MaskPLS. Specifically, we achieve 13.12
PQ† (49.51 % of PaSCo) and 13.09 mIoU (46.37 % of
PaSCo) in the ZS setting on SemanticKITTI and further im-
prove to 17.12 PQ† (64.63 % of PaSCo) with the semantic
oracle (SO). Similarly, CAL achieves 8.57 PQ† (43.87 %
of PaSCo) and 8.49 mIoU (40.11 % of PaSCo), narrowing
the gap to 17.12 PQ† (64.63 %) with SO on SSCBench-
KITTI-360. We find that the gap between CAL and the
supervised baselines is largely due to zero-shot recogni-
tion performance, which is limited by the underlying vision
foundation model. In our per-class analysis (further details
in Appx. C.3), we also see that the gap between CAL and
the supervised baselines is affected by rare classes (e.g.,
pedestrian and cyclist).

Comparison to zero-shot baselines. As there are no prior
works tackling Lidar PSC in zero-shot setting, we construct
two baselines adhering to the following criteria for a fair
zero-shot comparison: (1) input should be a single Lidar
scan, (2) scene completion model should be trained without
semantic labels, and (3) instance prediction and semantic
inference should rely on zero-shot recognition. Accordingly,
we combined recent Lidar completion methods that were
trained without semantic labels – LODE (Li et al., 2023b)
and LiDiff (Nunes et al., 2024) – with SAL (Osep et al.,
2024), a zero-shot panoptic segmentation model.

LODE performs implicit scene completion from sparse Li-
dar, trained with ground-truth completion data. We employ
the LODE variant that does not use any semantic labels.
We extract a surface mesh from its output, convert it to an
occupancy grid, and propagate SAL’s zero-shot per-point
panoptic labels to occupied voxels (LODE+SAL, Tab. 2).
LiDiff is a diffusion-based completion method that learns
to complete Lidar point clouds from GT completion data
without semantic labels. Similarly, we convert its output to
an occupancy grid and propagate SAL’s zero-shot panoptic
labels to voxels (LiDiff+SAL, Tab. 2).

As can be seen in Fig. 6 and Tab. 2, our method outperforms
zero-shot baselines across nearly all metrics. Notably, while

7

Towards Learning to Complete Anything in Lidar

Input Scan LiDiff + SAL LODE + SAL Ours (CAL) Ground Truth

Figure 6. Comparison to zero-shot baselines on SemanticKITTI. Given a single Lidar scan (1st col.), we compare CAL (4th col.) to
zero-shot baselines (2nd and 3rd cols.) combining LiDiff (Nunes et al., 2024) and LODE (Li et al., 2023b) with SAL (Osep et al., 2024).

Table 3. CRF refinement ablation. We evaluate pseudo-label quality with and without CRF refinement on SemanticKITTI and SSCBench-
KITTI360. Results show that CRF refinement significantly improves pseudo-label quality in both datasets and settings.

Semantic KITTI (Behley et al., 2019) (val set) SSCBench-KITTI360 (Li et al., 2024) (test set)
All Thing Stuff All Thing Stuff

Method PQ†↑ PQ↑ SQ RQ PQ SQ RQ PQ SQ RQ mIoU↑ PQ†↑ PQ↑ SQ RQ PQ SQ RQ PQ SQ RQ mIoU↑

Pseudo-label
CAL (SO) 12.78 5.59 46.22 9.39 5.00 49.79 8.56 6.02 43.63 10.00 17.77 11.48 4.44 35.06 7.14 3.24 47.17 5.81 5.04 29.00 7.81 13.22
CAL (ZS) 9.34 3.45 35.07 5.83 1.75 48.14 3.08 4.69 25.56 7.83 12.79 9.37 3.66 28.80 5.82 1.67 47.23 3.00 4.66 19.58 7.22 9.72

Pseudo-label + CRF
CAL (SO) 25.90 17.71 64.06 26.55 16.93 67.91 23.75 18.28 61.25 28.58 33.10 14.75 4.57 40.79 7.98 7.08 48.18 12.35 3.32 37.10 5.79 17.14
CAL (ZS) 16.98 10.67 54.02 16.19 7.30 67.19 10.21 13.12 44.43 20.54 20.62 10.98 3.18 33.95 5.58 3.91 48.30 6.86 2.82 26.78 4.95 11.04

Table 4. Pseudo-labeling engine ablations, semantic oracle (SO).
Pseudo-labels benefit from forward and backward propagation,
with notable improvements up to Tfw = 32 and Tbw = 8 frames.

Parameters All Thing Stuff SSC
Tfw Tbw w PQ†↑ PQ↑ SQ RQ PQ SQ RQ PQ SQ RQ IoU↑ mIoU↑

8 0 2 7.79 0.75 36.62 1.32 1.41 46.97 2.42 0.42 31.44 0.77 13.48 8.82
16 0 2 9.67 2.91 34.13 5.07 2.46 46.79 4.32 3.13 27.80 5.44 18.98 10.97
32 0 2 10.48 4.11 34.86 6.76 2.73 47.76 4.74 4.80 28.41 7.77 22.02 12.08
48 0 2 10.49 4.15 34.86 6.80 2.74 47.85 4.75 4.85 28.37 7.83 22.09 12.10

32 0 2 10.48 4.11 34.86 6.76 2.73 47.76 4.74 4.80 28.41 7.77 22.02 12.08
32 4 2 11.65 4.80 41.03 7.77 3.53 56.61 6.23 5.43 33.24 8.54 24.53 13.32
32 8 2 12.21 5.08 40.84 8.20 3.96 47.44 6.97 5.63 37.55 8.81 25.64 13.93

16 4 4 10.97 4.13 37.28 7.04 2.98 55.04 5.35 4.71 28.39 7.88 22.10 12.55
32 8 2 12.21 5.08 40.84 8.20 3.96 47.44 6.97 5.63 37.55 8.81 25.64 13.93
64 16 1 13.10 5.69 47.59 9.07 5.34 57.04 9.33 5.87 42.87 8.94 27.96 14.81

the baselines leverage completion models trained on fully
completed GT, our approach excels despite using pseudo-
labels with only partial coverage. This highlights that zero-
shot panoptic Lidar scene completion is challenging and not
trivially addressed by prior art.

Completion and amodal 3D detection. Our method com-
pletes the full amodal extent of objects, highlighting its
potential for zero-shot amodal perception tasks. We qualita-
tively assess CAL for amodal 3D object detection in Fig. 5
by fitting 3D bounding boxes to the recognized objects.

4.3. Pseudo-labeling engine analysis

Temporal mask aggregation. In Tab. 4, we evaluate
pseudo-label quality w.r.t GT labels, using PSC metrics
in the SO setting (ZS results are provided in Appx. C.2).
We ablate the number of frames used for forward Tfw and
backward Tbw propagation and stride w. We perform this
analysis before CRF refinement, directly using the output
from Fig. 2 3⃝. We notice that propagation is beneficial
in both forward and backward directions. We observe an
increasing improvement up to Tfw = 32 (10.48 PQ†)

Table 5. Coverage analysis. Coverage of mask pseudo-labels (w/o
CRF, Label) and binary occupancy (w/o 360◦ aggr., Occ.).

SemanticKITTI(val) SSCBench-KITTI360 (val)
CRF Label 360 ◦ Occ. CRF Label 360 ◦ Occ.

Coverage % Aggr. Coverage % Coverage % Aggr. Coverage %
✗ 28.04 ✗ 37.36 ✗ 27.38 ✗ 44.15
✓ 70.13 ✓ 99.96 ✓ 50.48 ✓ 67.63

and only marginal improvements using Tfw = 48 (10.49
PQ†). Increasing Tbw also improves performance. We find
that the the best combination is Tbw = 8 and Tfw = 32
(12.21 PQ†). Interestingly, backward propagation improves
completion of partially visible instances near the reference
camera. We observe no significant improvements between
w = {1, 2} and a degradation in performance when in-
creasing to w = 4 (10.97 PQ†) due to the large temporal
gap the video propagation model (Ravi et al., 2024) must
bridge. While the best results are achieved with Tfw = 64,
Tbw = 16, w = 1 (13.10 PQ†), we use the combination
Tfw = 32 Tbw = 8, w = 2 in our experiments due to the
improved runtime of pseudo-labeling.

Refinement with CRF. We study the pseudo-label quality
with & w/o CRF refinement (Fig. 2 5⃝) and report results in
Tab. 3. Due to the limited visibility within a camera frustum,
our pseudo labels cover approximately 28% of the binary
occupancy obtained with full 360◦ Lidar scans (Tab. 5).
CRF refinement greatly improves pseudo-label quality on
SemanticKITTI and SSCBench-KITTI360 datasets (Tab. 3).
For instance, we notice an improvement from 12.78 PQ†

to 25.90 PQ† in the SO setting on SemanticKITTI.

Pseudo-label coverage. In Tab. 5, we study the pseudo-
label coverage (Label Coverage %) with and w/o CRF re-
finement and binary occupancy coverage (Occ. Coverage
%) with and w/o full LiDAR scan aggregation. Pseudo-
label coverage is lower without CRF due to limited visi-

8

Towards Learning to Complete Anything in Lidar

Table 6. CAL model ablations. We analyze the contribution of
CAL’s key design choices and components: training Bo with par-
tial coverage (Bpc

o) or with full coverage (Bfc
o), introducing S,

and adding Bs. Introducing S provides a significant improvement,
likely due to its implicit semantic regularization. Training with
full coverage (Bfc

o) and Bs further improve performance.

Training Components All Thing Stuff SSC

Bpc
o Bfc

o S Bs PQ†↑ PQ↑ SQ RQ PQ SQ RQ PQ SQ RQ mIoU↑

Semantic oracle
✓ ✗ ✗ ✗ 4.81 0.01 8.42 0.03 0.00 7.10 0.00 0.02 9.38 0.04 4.84
✓ ✗ ✓ ✗ 16.08 5.25 41.83 8.67 3.46 51.62 5.60 6.54 34.72 10.90 20.40
✗ ✓ ✓ ✗ 17.01 6.02 44.69 9.71 3.14 51.08 5.11 8.12 40.05 13.05 21.08
✗ ✓ ✓ ✓ 17.12 6.27 43.40 10.06 3.48 44.39 5.65 8.30 42.67 13.27 20.71

CLIP Semantics
✓ ✗ ✗ ✗ 3.73 0.01 5.68 0.01 0.00 7.10 0.00 0.01 4.66 0.02 3.15
✓ ✗ ✓ ✗ 11.98 4.21 21.19 6.92 1.81 22.46 2.82 5.96 20.27 9.91 11.96
✗ ✓ ✓ ✗ 13.43 5.10 33.10 8.16 1.70 23.73 2.62 7.57 39.92 12.19 12.48
✗ ✓ ✓ ✓ 13.12 5.26 27.45 8.44 2.42 22.79 3.89 7.33 30.84 11.76 13.09

bility with the camera frustums (Sec. 3.1). CRF improves
this coverage by 1.9× on SSCBench-KITTI360 and 2.5×
on SemanticKITTI. Similarly, binary occupancy coverage
benefits from full Lidar scan aggregation, improving cover-
age from 37.36% to 99.96% on SemanticKITTI and from
44.15% to 67.63% on SSCBench-KITTI3602.

4.4. CAL model analysis

Model ablations. In Tab. 6, we analyze the effects of
the key CAL design choices and components: training Bo

with partial coverage (Bpc
o), training Bo with full coverage

(Bfc
o), introducing the (pseudo) semantic head S, and the

additional binary head Bs. Tab. 6 reports the SO and ZS
results for CAL trained on the SemanticKITTI dataset; we
observe similar results for SSCBench-KITTI360. Training
with partial coverage pseudo-labels (Bpc

o) achieves the worst
performance of 4.81 PQ† due to the model overfitting on
common and fully visible instances. Introducing S improves
the results to 16.08 PQ† and 11.98 PQ† in the SO and ZS
settings, respectively. This highlights that CLIP feature
prototypes are beneficial for learning class-agnostic shape
priors. Introducing full coverage guidance (Bfc

o) and Bs

improves performance in most settings.

CLIP prototypes. We study CAL performance when vary-
ing the number of CLIP prototypes C (Sec. 3.2) and report
results on SemanticKITTI (ZS) in Tab. 7. We observe that
the performance is not particularly sensitive to the num-
ber of clusters C ∈ {6, 18, 50, 100}. Specifying C = 18
clusters (close to the number of annotated semantic groups
in common datasets) yields the highest overall PQ. The
extreme case of C = 1 shows significant performance degra-
dation, demonstrating the benefits of CLIP prototypes for
learning semantic occupancy priors. Unsurprisingly, perfor-
mance is negatively affected when trained with too many
clusters (C = 500). In practice, the number of clusters does

2The discrepancy likely originated from undocumented point
accumulation strategy, which we could not clarify with authors.

Table 7. Number of CLIP prototypes. We evaluate SSC/PSC
performance on SemanticKITTI when varying the number of
CLIP prototypes C. We observe similar performance with C ∈
{6, 18, 50, 100}, indicating general robustness to C. Extreme
cases (C = 1 and C = 500) result in performance degradation.

All Thing Stuff SSC

C PQ†↑ PQ↑ SQ RQ PQ SQ RQ PQ SQ RQ mIoU↑

1 3.73 0.01 5.68 0.01 0.00 7.10 0.00 0.01 4.66 0.02 3.15
6 12.22 4.74 24.36 7.61 2.16 22.92 3.30 6.61 26.41 10.75 11.07
18 13.12 5.26 27.45 8.44 2.42 22.79 3.89 7.33 30.84 11.76 13.09
50 12.62 4.69 27.98 7.60 1.83 23.93 2.82 6.77 30.93 11.07 12.57

100 13.16 4.81 32.82 7.90 1.82 29.07 2.83 6.99 35.55 11.59 12.55
500 4.76 1.59 5.65 2.82 0.00 0.00 0.00 2.75 9.75 4.88 4.45

not constrain the types of objects that can be completed
and recognized. For example, if car and van are in the
same pseudo-class, our instance decoder can distinguish
them as individual instances, while their estimated CLIP
token allows us to recognize them as instances of different
classes. Finally, we note that our approach under-segments
rare semantic classes due to k-means-based CLIP feature
space quantization.

Limitations. While our method demonstrates strong per-
formance under zero-shot conditions, several limitations
remain. Pseudo-label accuracy depends on the robustness
of video foundation models, which can suffer from tracking
errors such as ID switches and recognition failures, espe-
cially under significant view changes or occlusions. These
errors can lead to incomplete or noisy label coverage, par-
ticularly in poorly visible regions. Another limitation is
the performance gap between our zero-shot approach and
fully-supervised methods, driven by challenges in zero-shot
recognition and lower pseudo-label coverage due to camera-
LiDAR visibility constraints. To address these limitations,
future work could explore improved temporal association us-
ing geometric cues, integration of improved foundation mod-
els, and strategies for scaling to larger unlabeled datasets to
further close the gap with supervised baselines.

5. Conclusion
We propose the first method for Zero-Shot Lidar Panoptic
Scene Completion, capable of completing objects in a sparse
and incomplete Lidar scan. The key components of CAL are
a pseudo-labeling engine that mines completed shape priors
with queryable semantic features, and a zero-shot model
trained on pseudo-labels. Our work takes a step towards
learning shape priors from temporal context, laying the foun-
dation for amodal perception. However, our pseudo-labeling
engine remains computationally expensive, and despite CRF
refinement, label coverage is limited. A potential solution is
leveraging self-supervised LiDAR forecasting to improve
label coverage in fully unobserved regions. We believe these
are promising directions for future work.

9

Towards Learning to Complete Anything in Lidar

Acknowledgements
We thank Zan Gojcic and Dávid Rozenberszki for their
valuable feedback and comments!

References
Achlioptas, P., Diamanti, O., Mitliagkas, I., and Guibas, L.

Learning representations and generative models for 3d
point clouds. In Int. Conf. Learn. Represent., 2018.

Behley, J., Garbade, M., Milioto, A., Quenzel, J., Behnke,
S., Stachniss, C., and Gall, J. SemanticKITTI: A Dataset
for Semantic Scene Understanding of LiDAR Sequences.
In Int. Conf. Comput. Vis., 2019.

Behley, J., Milioto, A., and Stachniss, C. A Benchmark for
LiDAR-based Panoptic Segmentation based on KITTI.
In Int. Conf. Rob. Automat., 2021.

Cao, A.-Q., Dai, A., and de Charette, R. Pasco: Urban 3d
panoptic scene completion with uncertainty awareness.
In IEEE Conf. Comput. Vis. Pattern Recog., 2024.

Chang, A. X., Funkhouser, T., Guibas, L., Hanrahan, P.,
Huang, Q., Li, Z., Savarese, S., Savva, M., Song, S.,
Su, H., et al. Shapenet: An information-rich 3d model
repository. arXiv preprint arXiv:1512.03012, 2015.

Cheng, B., Misra, I., Schwing, A. G., Kirillov, A., and Gird-
har, R. Masked-attention mask transformer for universal
image segmentation. In IEEE Conf. Comput. Vis. Pattern
Recog., 2022.

Choy, C., Gwak, J., and Savarese, S. 4D spatio-temporal
convnets: Minkowski convolutional neural networks. In
IEEE Conf. Comput. Vis. Pattern Recog., 2019.

Dai, A., Chang, A. X., Savva, M., Halber, M., Funkhouser,
T., and Nießner, M. Scannet: Richly-annotated 3d recon-
structions of indoor scenes. In IEEE Conf. Comput. Vis.
Pattern Recog., 2017a.

Dai, A., Ruizhongtai Qi, C., and Nießner, M. Shape comple-
tion using 3d-encoder-predictor cnns and shape synthesis.
In IEEE Conf. Comput. Vis. Pattern Recog., 2017b.

Dai, A., Ritchie, D., Bokeloh, M., Reed, S., Sturm, J., and
Nießner, M. Scancomplete: Large-scale scene completion
and semantic segmentation for 3d scans. In IEEE Conf.
Comput. Vis. Pattern Recog., 2018.

Dai, A., Diller, C., and Nießner, M. Sg-nn: Sparse gener-
ative neural networks for self-supervised scene comple-
tion of rgb-d scans. In IEEE Conf. Comput. Vis. Pattern
Recog., 2020.

Deitke, M., Schwenk, D., Salvador, J., Weihs, L., Michel,
O., VanderBilt, E., Schmidt, L., Ehsani, K., Kembhavi,
A., and Farhadi, A. Objaverse: A universe of annotated
3d objects. In IEEE Conf. Comput. Vis. Pattern Recog.,
2023.

Ding, Z., Wang, J., and Tu, Z. Open-vocabulary universal
image segmentation with maskclip. In Int. Conf. Mach.
Learn., 2023.

Fong, W. K., Mohan, R., Hurtado, J. V., Zhou, L., Caesar,
H., Beijbom, O., and Valada, A. Panoptic nuscenes: A
large-scale benchmark for lidar panoptic segmentation
and tracking. IEEE Rob. Automat. Letters, 2021.

Garbade, M., Chen, Y.-T., Sawatzky, J., and Gall, J. Two
stream 3d semantic scene completion. In CVPR Work-
shops, 2019.

Geiger, A., Lenz, P., and Urtasun, R. Are we ready for
autonomous driving? The KITTI vision benchmark suite.
In CVPR, 2012.

Geiger, A., Lenz, P., Stiller, C., and Urtasun, R. Vision
meets robotics: The KITTI dataset. Int. J. Rob. Research,
2013.

Groß, J., Ošep, A., and Leibe, B. Alignnet-3d: Fast point
cloud registration of partially observed objects. In Int.
Conf. 3D Vis., 2019.

Huang, S., Gojcic, Z., Huang, J., Wieser, A., and Schindler,
K. Dynamic 3d scene analysis by point cloud accumula-
tion. In Eur. Conf. Comput. Vis., 2022.

Jun, H. and Nichol, A. Shap-e: Generating conditional
3d implicit functions. arXiv preprint arXiv:2305.02463,
2023.

Khurana, M., Peri, N., Ramanan, D., and Hays, J. Shelf-
supervised multi-modal pre-training for 3d object detec-
tion. arXiv preprint arXiv:2406.10115, 2024.

Kirillov, A., He, K., Girshick, R., Rother, C., and Dollár,
P. Panoptic segmentation. In IEEE Conf. Comput. Vis.
Pattern Recog., 2019.

Kirillov, A., Mintun, E., Ravi, N., Mao, H., Rolland, C.,
Gustafson, L., Xiao, T., Whitehead, S., Berg, A. C., Lo,
W.-Y., et al. Segment anything. In Int. Conf. Comput.
Vis., 2023.

Krähenbühl, P. and Koltun, V. Efficient inference in fully
connected crfs with gaussian edge potentials. In Adv.
Neural Inform. Process. Syst., volume 24, 2011.

Li, L., Shum, H. P. H., and Breckon, T. P. Less Is More: Re-
ducing Task and Model Complexity for 3D Point Cloud
Semantic Segmentation. In IEEE Conf. Comput. Vis. Pat-
tern Recog., 2023a.

10

Towards Learning to Complete Anything in Lidar

Li, P., Zhao, R., Shi, Y., Zhao, H., Yuan, J., Zhou, G.,
and Zhang, Y.-Q. LODE: Locally Conditioned Eikonal
Implicit Scene Completion from Sparse LiDAR. In Int.
Conf. Rob. Automat., 2023b.

Li, Y., Li, S., Liu, X., Gong, M., Li, K., Chen, N., Wang,
Z., Li, Z., Jiang, T., Yu, F., Wang, Y., Zhao, H., Yu, Z.,
and Feng, C. Sscbench: A large-scale 3d semantic scene
completion benchmark for autonomous driving. In Int.
Conf. Intel. Rob. Sys., 2024.

Liang, L., Akhtar, N., Vice, J., and Mian, A. Voxel-and
bird’s-eye-view-based semantic scene completion for li-
dar point clouds. Remote Sensing, 16(13):2266, 2024.

Liao, Y., Xie, J., and Geiger, A. KITTI-360: A Novel
Dataset and Benchmarks for Urban Scene Understanding
in 2D and 3D. In IEEE Trans. Pattern Anal. Mach. Intell.,
2021.

Liu, S., Hu, Y., Zeng, Y., Tang, Q., Jin, B., Han, Y., and
Li, X. See and think: Disentangling semantic scene
completion. Adv. Neural Inform. Process. Syst., 2018.

Liu, Y., Kong, L., Cen, J., Chen, R., Zhang, W., Pan, L.,
Chen, K., and Liu, Z. Segment any point cloud sequences
by distilling vision foundation models. In Advances in
Neural Information Processing Systems, 2023.

Liu, Z., Zhang, Z., Cao, Y., Hu, H., and Tong, X. Group-
free 3d object detection via transformers. In Int. Conf.
Comput. Vis., 2021.

Ma, Y., Peri, N., Wei, S., Hua, W., Ramanan, D., Li, Y.,
and Kong, S. Long-tailed 3d detection via 2d late fusion.
arXiv preprint arXiv:2312.10986, 2023.

Marcuzzi, R., Nunes, L., Wiesmann, L., Behley, J., and
Stachniss, C. Mask-based panoptic lidar segmentation
for autonomous driving. IEEE Rob. Automat. Letters, 8
(2):1141–1148, 2023.

Mei, J., Yang, Y., Wang, M., Huang, T., Yang, X., and Liu,
Y. Ssc-rs: Elevate lidar semantic scene completion with
representation separation and bev fusion. In Int. Conf.
Intel. Rob. Sys., 2023.

Mescheder, L., Oechsle, M., Niemeyer, M., Nowozin, S.,
and Geiger, A. Occupancy networks: Learning 3d recon-
struction in function space. In IEEE Conf. Comput. Vis.
Pattern Recog., 2019.

Mittal, H., Okorn, B., Jangid, A., and Held, D. Self-
supervised point cloud completion via inpainting. Brit.
Mach. Vis. Conf., 2021.

Mittal, P., Cheng, Y.-C., Singh, M., and Tulsiani, S. Au-
tosdf: Shape priors for 3d completion, reconstruction and

generation. In IEEE Conf. Comput. Vis. Pattern Recog.,
2022.

Najibi, M., Ji, J., Zhou, Y., Qi, C. R., Yan, X., Ettinger, S.,
and Anguelov, D. Motion inspired unsupervised percep-
tion and prediction in autonomous driving. In Eur. Conf.
Comput. Vis., 2022.

Najibi, M., Ji, J., Zhou, Y., Qi, C. R., Yan, X., Ettinger, S.,
and Anguelov, D. Unsupervised 3d perception with 2d
vision-language distillation for autonomous driving. In
Int. Conf. Comput. Vis., 2023.

Nam, G., Khlifi, M., Rodriguez, A., Tono, A., Zhou, L.,
and Guerrero, P. 3d-ldm: Neural implicit 3d shape
generation with latent diffusion models. arXiv preprint
arXiv:2212.00842, 2022.

Ntavelis, E., Siarohin, A., Olszewski, K., Wang, C., Gool,
L. V., and Tulyakov, S. Autodecoding latent 3d diffusion
models. Advances in Neural Information Processing
Systems, 36:67021–67047, 2023.

Nunes, L., Marcuzzi, R., Mersch, B., Behley, J., and Stach-
niss, C. Scaling Diffusion Models to Real-World 3D
LiDAR Scene Completion. In IEEE Conf. Comput. Vis.
Pattern Recog., 2024.

Osep, A., Meinhardt, T., Ferroni, F., Peri, N., Ramanan, D.,
and Leal-Taixe, L. Better call sal: Towards learning to
segment anything in lidar. In Eur. Conf. Comput. Vis.,
2024.

Park, J. J., Florence, P., Straub, J., Newcombe, R., and
Lovegrove, S. Deepsdf: Learning continuous signed
distance functions for shape representation. In IEEE
Conf. Comput. Vis. Pattern Recog., 2019.

Peng, S., Genova, K., Jiang, C., Tagliasacchi, A., Pollefeys,
M., and Funkhouser, T. Openscene: 3d scene understand-
ing with open vocabularies. In IEEE Conf. Comput. Vis.
Pattern Recog., 2023.

Peri, N., Dave, A., Ramanan, D., and Kong, S. Towards
long-tailed 3d detection. In Conf. Rob. Learn., 2023a.

Peri, N., Li, M., Wilson, B., Wang, Y.-X., Hays, J., and
Ramanan, D. An empirical analysis of range for 3d object
detection. In Proceedings of the IEEE/CVF International
Conference on Computer Vision (ICCV) Workshops, pp.
4074–4083, October 2023b.

Petrovskaya, A. and Thrun, S. Model based vehicle de-
tection and tracking for autonomous urban driving. Aut.
Rob., 26:123–139, 2009.

Radford, A., Kim, J. W., Hallacy, C., Ramesh, A., Goh, G.,
Agarwal, S., Sastry, G., Askell, A., Mishkin, P., Clark, J.,

11

Towards Learning to Complete Anything in Lidar

et al. Learning transferable visual models from natural
language supervision. In Int. Conf. Mach. Learn., 2021.

Ravi, N., Gabeur, V., Hu, Y.-T., Hu, R., Ryali, C., Ma,
T., Khedr, H., Rädle, R., Rolland, C., Gustafson, L.,
Mintun, E., Pan, J., Alwala, K. V., Carion, N., Wu, C.-Y.,
Girshick, R., Dollár, P., and Feichtenhofer, C. SAM
2: Segment Anything in Images and Videos. arXiv
preprint arXiv:2408.00714, 2024. URL https://
arxiv.org/abs/2408.00714.

Ren, X., Huang, J., Zeng, X., Museth, K., Fidler, S., and
Williams, F. Xcube: Large-scale 3d generative modeling
using sparse voxel hierarchies. In IEEE Conf. Comput.
Vis. Pattern Recog., 2024.

Rist, C. B., Emmerichs, D., Enzweiler, M., and Gavrila,
D. M. Semantic scene completion using local deep im-
plicit functions on lidar data. IEEE Trans. Pattern Anal.
Mach. Intell., 44(10):7205–7218, 2021.

Roldao, L., de Charette, R., and Verroust-Blondet, A. Lmsc-
net: Lightweight multiscale 3d semantic completion. In
Int. Conf. 3D Vis., 2020.

Seidenschwarz, J., Ošep, A., Ferroni, F., Lucey, S., and
Leal-Taixé, L. Semoli: What moves together belongs
together. IEEE Conf. Comput. Vis. Pattern Recog., 2024.

Song, S., Yu, F., Zeng, A., Chang, A. X., Savva, M., and
Funkhouser, T. Semantic scene completion from a single
depth image. In IEEE Conf. Comput. Vis. Pattern Recog.,
2017.

Takmaz, A., Fedele, E., Sumner, R. W., Pollefeys, M.,
Tombari, F., and Engelmann, F. OpenMask3D: Open-
Vocabulary 3D Instance Segmentation. In Adv. Neural
Inform. Process. Syst., 2023.

Tian, X., Jiang, T., Yun, L., Mao, Y., Yang, H., Wang,
Y., Wang, Y., and Zhao, H. Occ3d: A large-scale 3d
occupancy prediction benchmark for autonomous driving.
Adv. Neural Inform. Process. Syst., 2024.

Unal, O., Dai, D., and Van Gool, L. Scribble-supervised
lidar semantic segmentation. In IEEE Conf. Comput. Vis.
Pattern Recog., 2022.

Vahdat, A., Williams, F., Gojcic, Z., Litany, O., Fidler, S.,
Kreis, K., et al. Lion: Latent point diffusion models for
3d shape generation. Adv. Neural Inform. Process. Syst.,
2022.

Van Den Oord, A., Vinyals, O., et al. Neural discrete rep-
resentation learning. Adv. Neural Inform. Process. Syst.,
2017.

Vobecky, A., Siméoni, O., Hurych, D., Gidaris, S., Bursuc,
A., Pérez, P., and Sivic, J. Pop-3d: Open-vocabulary 3d
occupancy prediction from images. Adv. Neural Inform.
Process. Syst., 2023.

Wu, J., Zhang, C., Xue, T., Freeman, B., and Tenenbaum, J.
Learning a probabilistic latent space of object shapes via
3d generative-adversarial modeling. Adv. Neural Inform.
Process. Syst., 2016.

Wu, Z., Song, S., Khosla, A., Yu, F., Zhang, L., Tang, X.,
and Xiao, J. 3d shapenets: A deep representation for
volumetric shapes. In IEEE Conf. Comput. Vis. Pattern
Recog., 2015.

Xia, Z., Liu, Y., Li, X., Zhu, X., Ma, Y., Li, Y., Hou, Y., and
Qiao, Y. SCPNet: Semantic Scene Completion on Point
Cloud. In CVPR, 2023.

Xiao, Z., Jing, L., Wu, S., Zhu, A. Z., Ji, J., Jiang, C. M.,
Hung, W.-C., Funkhouser, T., Kuo, W., Angelova, A.,
et al. 3d open-vocabulary panoptic segmentation with
2d-3d vision-language distillation. In Eur. Conf. Comput.
Vis., 2024.

Yan, X., Gao, J., Li, J., Zhang, R., Li, Z., Huang, R., and
Cui, S. Sparse Single Sweep LiDAR Point Cloud Seg-
mentation via Learning Contextual Shape Priors from
Scene Completion. In AAAI, 2021.

Yin, T., Zhou, X., and Krähenbühl, P. Center-based 3d
object detection and tracking. In IEEE Conf. Comput. Vis.
Pattern Recog., 2021.

Yuan, W., Khot, T., Held, D., Mertz, C., and Hebert, M. Pcn:
Point completion network. In Int. Conf. 3D Vis., 2018.

Zhang, L., Yang, A. J., Xiong, Y., Casas, S., Yang, B.,
Ren, M., and Urtasun, R. Towards unsupervised object
detection from lidar point clouds. In IEEE Conf. Comput.
Vis. Pattern Recog., 2023.

Zheng, J., Tang, P., Wang, Z., Wang, G., Ren, X., Feng,
B., and Ma, C. Veon: Vocabulary-enhanced occupancy
prediction. In Eur. Conf. Comput. Vis., 2024.

Zhou, C., Loy, C. C., and Dai, B. Extract free dense labels
from clip. In Eur. Conf. Comput. Vis., 2022.

Zhou, Y. and Tuzel, O. Voxelnet: End-to-end learning for
point cloud based 3d object detection. In IEEE Conf.
Comput. Vis. Pattern Recog., 2018.

Zhu, X., Zhou, H., Wang, T., Hong, F., Ma, Y., Li, W., Li, H.,
and Lin, D. Cylindrical and asymmetrical 3d convolution
networks for lidar segmentation. In CVPR, 2021.

12

https://arxiv.org/abs/2408.00714
https://arxiv.org/abs/2408.00714

Towards Learning to Complete Anything in Lidar

A. CAL Pseudo-Labeling Engine Details
In this section, we provide additional implementation details of our pseudo-labeling engine, and provide further insights into
the pseudo-labeled data we generate for training purposes. An overview of the pseudo-label generation configuration can be
found in Tab. 8 for both SemanticKITTI (Behley et al., 2019) and KITTI360 (Liao et al., 2021) datasets.

Table 8. Pseudo-labeling engine configuration with dataset-specific parameters for SemanticKITTI and KITTI360.

Parameter SemanticKITTI KITTI360

Temporal Window for Video-Object Localization

Number of forward frames (Tfw) 32 32
Number of backward frames (Tbw) 8 8
Stride (w) 2 2

Temporal Window for Binary Occupancy Aggregation

Number of forward frames 72 72
Number of backward frames 1 36
Stride 1 1

CRF Settings

Number of iterations 5 5

Other Settings

Dynamic object removal ✗ ✓

SAM Automatic Mask Generator Configuration

Model sam vit h 4b8939 sam vit h 4b8939
Points per side 32 32
Points per batch 64 64
Pred. IoU threshold 0.84 0.88
Stability score threshold 0.86 0.90
Stability score offset 1.0 1.0
Crop N layers 1 0
Box NMS threshold 0.7 0.8
Crop N layers downscale factor 2 1
Min. mask region area 100 100
Crop NMS threshold 0.7 0.8

SAM2 Video-Object Localization Configuration

Model sam2 hiera large sam2 hiera large
Points per side 32 32
Points per batch 64 64
Pred. IoU threshold 0.5 0.8
Stability score threshold 0.5 0.9
Stability score offset 1.0 1.0
Crop N layers 1 1
Box NMS threshold 0.7 0.7
Crop N layers downscale factor 2 2
Min. mask region area 100 100
Crop NMS threshold 0.7 0.7

Voxelization and Alignment Settings

Voxel size 0.2 0.2
Scene size (m) (51.2, 51.2, 6.4) (51.2, 51.2, 6.4)
Voxel grid origin (0, -25.6, -2) (0, -25.6, -2)
Grid size (256, 256, 32) (256, 256, 32)
Camera-to-Lidar alignment shift (0.0, 0.0, 0.0) (0.79, 0.3, -0.25)

13

Towards Learning to Complete Anything in Lidar

A.1. CRF-based refinement module

In our pseudo-labeling engine (as depicted in Fig. 2 of the main paper), we first accumulate two types of information:
binary occupancy, and completed instance masks. As depicted in Tab. 10, the binary occupancy (voxels that are occupied)
information we obtain has much higher coverage compared to our pseudo-labeled mask coverage. As the mask-level
information relies on whether we were able to successfully detect and track a mask across the RGB sequence, there are
areas in the full scene for which we only have occupancy information from the Lidar scan, but no intance-level labels. For
example, if the ego-vehicle drives by a parked car, the RGB camera only observes the visible parts of the car, hence only
tracking those areas across the video. This often results in incomplete mask coverage of objects that are only observed from
one side, such as parked cars. However, our occupancy signal is more complete as it is obtained from 360◦ Lidar scans.
To benefit from this additional information and improve our partial pseudo-label coverage, we employ Dense Conditional
Random Fields (DenseCRF) to propagate our mask-level pseudo-labels to unlabeled but occupied areas, in order to improve
and refine our masks. For this purpose, we rely on the DenseCRF Python wrapper provided in pydensecrf, based on the
work of Krähenbühl et al. (Krähenbühl & Koltun, 2011).

We perform CRF-guided refinement only in the occupied area by operating on the sparse voxel representation. This implies
that CRF does not change the occupancy coverage, but only increases mask-level label coverage. We use a multi-class
setting where we define each separate instance mask ID as a class label (e.g. mask 1 has class ID 1 and mask 2 has class ID 2
etc.) in a class-agnostic setting. The unary energy is obtained from class-probabilities which represent the initial confidence
in each voxel belonging to a particular class. For voxels which already belong to a mask, we initialize unary-potentials
based on the original instance mask IDs, meaning that we set a probability of 1.0 for the original class. For the occupied but
unlabeled voxels, we initialize the probabilities as a uniform distribution over all classes (i.e., instance mask IDs). Pairwise
potentials for DenseCRF are defined based on the voxel coordinates, using features formulated as the normalized voxel
coordinates. This way, the features represent the spatial proximity of the voxels. These pairwise potentials encourage
neighboring voxels to have similar labels, thereby refining the initial pseudo labels, and improving the level of completion.
We then run DenseCRF inference for 5 steps to refine the labels iteratively. Finally, we ensure that none of the original voxel
mask labels change after the CRF-guided refinement by ensuring that the voxels with initial labels preserve their original
mask labels. Furthermore, the only update that the CRF-guidance performs is regarding the class-agnostic masks over the
voxel grid, meaning that the CLIP features are not affected by this operation.

A.2. Handling dynamic objects

Our video-object localization process segments points that correspond to both static and dynamic parts of the scene.
However, since we need to correctly accumulate a dense point cloud representation for the objects in the scene, handling
dynamic objects would require registering their partial observations and correctly mapping them to the canonical pose for
accurate reconstruction. Existing methods that perform dynamic object synchronization and rectification (Li et al., 2024;
Xia et al., 2023) rely on panoptic segmentation labels for identifying and registering such objects. However, (1) we assume
no access to semantic labels, and (2) performing such registration is error-prone in our setting.

In the original SemanticKITTI completion benchmark (Behley et al., 2019), while performing point level aggregation,
spatio-temporal tubes for dynamic objects are preserved, and such objects are neither registered to the canonical pose
and synchronized per frame, nor removed. For consistency with the supervised baselines, we perform the same, where
we preserve the moving-object tubes. However, for the KITTI-360 (Liao et al., 2021) dataset where the 3D object tracks
are available as an asset in the dataset, we perform a dynamic object removal operation and only keep the static parts of
the scene during Lidar point cloud accumulation. We would like to highlight that while such object tracks are commonly
available in most autonomous driving datasets, it is also possible to instead use automatic 3D object detection approaches
for this purpose. For this dynamic object removal operation, after backprojecting the predicted 2D instance masks onto the
Lidar point cloud, we first fit 3D z-axis aligned bounding boxes to each 3D object point cloud. If the overlap between the
3D bounding boxes of dynamic objects (from the 3D object tracks available as an asset) and the predicted (fitted) object
boxes exceeds a certain limit, we classify this predicted object as dynamic. Any object mask ID associated with a dynamic
object in any frame within the temporal window [t − Tbw, t + Tfw] is discarded, and not used for final aggregation of
pseudo-labeled instance masks. To note once again, we perform this process only for KITTI360, and we keep the moving
object tubes for our experiments in SemanticKITTI, in alignment with the original benchmark from (Behley et al., 2019).
Our results show that our method CAL learns to complete both static and dynamic objects despite the fact that only the static
parts get correctly aligned (registered) for completion in our pseudo-labeled training data for both datasets.

14

Towards Learning to Complete Anything in Lidar

A.3. Lifting and refinement

Following Osep et al. (2024), we perform a refinement of the 3D masks m3D
t,k based on 3D segments obtained via DBSCAN

clustering on the points from the Lidar scan Lt, which are inherently less noisy in the 3D space. More specifically, for each
Lidar scan, we perform DBSCAN at varying density thresholds ϵ ∈ {(1.2488, 0.8136, 0.6952, 0.594, 0.4353, 0.3221)} to
compensate for varying point density in Lidar scans. This operation is performed after ground plane fitting following Osep
et al. (2024). After obtaining clusters (segments) with each of these thresholds, we match each predicted 3D mask m3D

t,k

with the best-matching segment (matching in terms of IoU). If the overlap between the predicted mask and the matched
segment is above a certain threshold (0.5), we replace each predicted mask m3D

t,k with the matched segment. Differently
from (Osep et al., 2024), we perform this operation for each scan in our temporal window [t− Tbw, t+ Tfw].

A.4. Voxelization details

Following the voxelization process from SemanticKITTI (Behley et al., 2019), which was also followed in SSCBench-
KITTI360 (Li et al., 2024), we crop the volume in front of the camera using a minimum extent of [0,−25.6,−2] and
maximum extent of [51.2, 25.6, 4.4] in meters. Each aggregated point cloud is first cropped within these bounds, and
then centralized using the predefined voxel-origin, by subtracting (0,−25.6,−2) from the aggregated point coordinates.
Next, we use a voxel size of 0.2 following prior work to voxelize the point coordinates obtained in the previous step. For
SSCBench-KITTI360, we observe that the camera placement procedure is different than the procedure in SemanticKITTI,
as the ground truth voxel grids had undergone a Lidar-to-Camera alignment transformation according to the discussions
available in the official repository of SSCBench-KITTI360. However, we were unable to confirm the exact transformation
process after reaching out, so we empirically determined a transformation vector of [0.79, 0.3,−0.25] with our best efforts
to obtain an alignment vector to apply to our pseudo-labels before voxalization, in order to provide correct GT alignment for
evaluation, and to have a fair comparison between our method and the supervised baselines.

A.5. CLIP features

To obtain CLIP features associated with each object instance, we employ MaskCLIP (Zhou et al., 2022) on each masklet
across the video sequence, and average-pool normalized CLIP features obtained at each timestamp, per object. The output
from this operation is a separate CLIP feature vector of dimension 768, for each object in the scene.

B. CAL Model Details
B.1. Architecture Details

Overview. Our model architecture is built upon a sparse-generative 3D U-Net, largely following the implementation in
(Cao et al., 2024), which consists of a feature backbone, an encoder followed by a dense 3D convolutional network, and
a multi-scale generative decoder consisting of 3 decoder blocks for each of the 3 scales of resolution. The features from
the generative decoder are passed to a transformer decoder which aims to produce a set of binary instance masks over the
predicted occupied voxels, along with an associated CLIP feature for each mask.

Encoder. The input to our model is a Lidar point cloud that is cropped within the bounding volume of the voxel-grid, which
is represented as an unstructured set of coordinates. This cropping operation follows the problem formulation introduced
for SSC and PSC benchmarks (Cao et al., 2024). This input point cloud is given as input to MLP and voxelization layers
based on Cylinder3D (Zhu et al., 2021) as in PaSCo (Cao et al., 2024). The voxelized features are then passed through a
sparse convolutional encoder that is composed of 4 encoder blocks which gradually upsample the features, resulting in
f1:1enc, f

1:2
enc, f

1:4
enc, f

1:8
enc. First encoder block consists of 3 residual blocks, and each of the remaining 3 encoder blocks consists of

a sparse convolutional layer (intended for feature upsampling) and 3 residual blocks. The final output from the encoder is
1:8 resolution features f1:8enc. Since the original input is sparse, and we would like to perform scene-scale completion in a
dense voxel grid, we employ a dense 3D convolutional network following PaSCO. This dense 3D convolutional network
takes f1:8enc from the encoder, and outputs the features fd3D.

Multi-scale generative decoder. The decoder in our sparse-generative 3D U-Net consists of 3 decoder blocks D1:L, for
each scale L ∈ [4, 2, 1]. Each decoder block D1:L is a structured generative block designed for sparse tensor operations.
It begins with an upsampling operation using a transposed convolution to increase spatial resolution, followed by batch

15

Towards Learning to Complete Anything in Lidar

normalization and a LeakyReLU activation layer. The resizing step adjusts feature dimensions via a point-wise convolution.
The output features from the decoder block D1:L is denoted as f1:Ldec .

Completion heads. The output features from each decoder block at each scale is passed through a set of completion heads:
binary occupancy prediction heads (B1:L

o and B1:L
s , as well as S1:L) for prototype prediction formulated as a classification

task. Please note that in our setting, we only use CLIP prototypes as a proxy for semantic classes, but we never have access
to the ground truth semantic classes at any capacity. To provide further detail, we have two types of binary occupancy
prediction heads: B1:L

o and B1:L
s . The binary occupancy head B1:L

o is a sparse convolutional layer which directly takes
decoder features f1:Ldec , and predicts per-voxel binary occupancy. B1:L

s on the other hand, takes the semantic voxel logits
from the semantic completion head S1:L, i.e. S1:L(f1:L

dec) as input. The reason why we have the additional B1:L
s head is the

following: since our binary occupancy labels are more complete, whereas the pseudo-labeled area with instance masks and
CLIP features have a smaller amount of coverage compared to the full occupied area, we are supervising binary occupancy
and semantic head with two separate completion signals with differing volume coverage. Therefore, by adding an additional
binary occupancy head to the output of the prototype-classification head, we aim to ensure that the classification head output
will not diverge from the binary occupancy head output, which could potentially result in mismatched regularization. This
way, we intend to encourage the network to complete the scene even in areas for which we do not have pseudo-labels (masks
and associated CLIP features).

Pruning. Similar to Cao et al. (2024), we also perform pruning of voxels based on the logits predicted by the prototype-
classification head to preserve sparsity, and continue refining per-voxel predictions only for voxels that were predicted to be
occupied in the coarser resolution. Further details regarding the pruning could be found in (Cao et al., 2024). The decoder
block output from a coarser scale is processed through the pruning layer, and the output is then passed to the next decoder
block as input. This process is repeated until the final decoder block with the highest resolution.

Transformer predictor. We adopt the mask-centric transformer architecture from (Cao et al., 2024), which is based on the
multi-scale decoder layer from Mask2Former (Cheng et al., 2022). This transformer model aims to perform panoptic scene
completion based on the multi-scale features f1:Ldec extracted in the generative decoder backbone. We perform the operations
only on the voxels that are predicted to be occupied in the generative decoder. The transformer decoder consists of 3 layers.
In addition to the original mask prediction heads from (Cao et al., 2024) our transformer decoder also includes a CLIP
distillation head which aims to predict a CLIP token for each query. This MLP block consists of layers with dimensions
[384, 512, 1024, 768, 768], where the final dimension, 768, is the dimensionality of the CLIP embedding space. In essence,
for each query, our method regresses a CLIP feature vector. Importantly, for mask prediction, our method outputs a soft
mask over the voxels: e.g., per-voxel probability over the list of sparse voxels (which are the voxels predicted to be occupied)
for a voxel to be included in the instance mask.

B.2. Implementation Details

Processing the predictions. A voxel probability threshold parameter (τvox is applied to obtain the final binary instance mask.
The objectness of the predicted instance mask is computed as the average per-voxel probability of the predicted instance
mask. We only keep the instance masks with an objectness score that is at least τobj . Lastly, we suppress overlapping masks,
if the pairwise mask overlap is above a specified mask overlap threshold, τovr. The mask overlap threshold, objectness
threshold and voxel probability threshold parameters are used both during training and test to refine the output. Since with
our pseudo-labeled dataset with occasional incomplete observations, we expect to have in general lower confidence in
the predicted masks and completed voxels. We empirically find that with the SemanticKITTI dataset which consists of a
smaller number of training samples, we benefit from setting lower confidence thresholds during inference. Therefore, while
performing inference for SemanticKITTI, we use an overlap threshold of τovr = 0.1, an objectness threshold of τobj = 0.1,
and voxel probability threshold of τvox = 0.1. For the KITTI-360 dataset which has a higher number of samples, we use an
overlap threshold of τovr = 0.4, and objectness threshold of τobj = 0.5 and voxel probability threshold of τvox = 0.3.

CLIP prototypes. To obtain the fixed prototype centers as described also in the main paper, we perform a clustering of the
CLIP features associated with each instance mask we have in our pseudo-labeled dataset. For SemanticKITTI, we have
118333 individual CLIP feature instances in our pseudo-labeled dataset, and for for KITTI-360 we have 301332 CLIP
feature instances. For clustering these features, we apply k-means, defining the number of groups we expect to create.
We experiment with different numbers of clusters. The setting k=1 refers to treating all masks with the same prototype
class, which in essence reduces to a trivial classification problem, reducing to overall task of the completion heads to binary

16

Towards Learning to Complete Anything in Lidar

occupancy prediction. We also use the setting k=6 as a proxy for supergroups of expected number of classes, following
Osep et al. (2024), and k=18 which represents the general number of commonly annotated number of classes for urban
scene datasets for autonomous driving such as SemanticKITTI and KITTI-360. We also experiment with higher numbers
of clusters to assess our method’s sensitivity to the number of clusters, by setting k ∈ 50, 100, 500. For all settings, the
prototypes are fixed at the beginning, and are not updated during training. At inference time, we completely discard our
model’s prototype class predictions, and only use the predicted instance masks over the voxel grid as well as the predicted
CLIP features.

B.3. CAL Training Details

Overall Loss Definition. Following the notation in the main paper, our total training objective combines four main terms:
(i) binary occupancy completion loss Locc, (ii) class-agnostic instance mask prediction loss Lmask, (iii) CLIP feature
distillation loss LCLIP, and (iv) per-voxel prototype classification loss Lprot.

Total loss is formulated as

Ltotal = λocc Locc + λprot Lprot + λmask Lmask + λCLIP LCLIP + Laux, (1)

where each λ is a scalar weight, λcompl = 1.0, λmask = 40.0, λCLIP = 1.0, λprot = 1.0.. Laux is an auxiliary loss term
following Cao et al. (2024). Below, we provide a detailed overview of the loss terms.

Completion Losses, Locc and Lprot. As described in the main paper, we supervise both geometric occupancy and coarse
semantic structure (via CLIP-based prototypes) at multiple scales. Specifically, we define binary occupancy loss (Locc) as
the term which supervises whether each voxel is occupied or empty via binary cross entropy. Next, we define Lprot, which
is the per-voxel prototype classification loss which classifies each voxel into one of C prototype categories derived from
CLIP features. This combines cross-entropy and Lovász losses. While computing this loss, we explicitly ignore voxels that
do not have a corresponding pseudo-label associated with them, as the pseudo-labeling system often has a limited coverage
of the full voxel grid volume. In practice, Locc and Lprot terms are computed and averaged across 3 scales (from coarse to
fine, L ∈ {4, 2, 1}) based on the outputs from the generative decoder. These multi-scale loss terms are averaged across 3
scales, i.e.

Lprot =
1

|{1, 2, 4}|
∑

L∈{1,2,4}

L1:L
prot and Locc =

1

|{1, 2, 4}|
∑

L∈{1,2,4}

L1:L
occ.

More specifically,
L1:L
occ = L1:L

occ,Bo
+ L1:L

occ,Bs

with individual binary occupancy loss terms for Bo and Bs, where L1:L
occ,Bo

and L1:L
occ,Bs

are defined as a weighted binary cross
entropy (wBCE) loss terms with respect to the pseudo-label binary occupancy at level L, O1:L

label, and predicted occupancy
outputs from Bo and Bs, defined as O1:L

Bo
and O1:L

Bs
respectively:

L1:L
occ,Bo

= wBCE(O1:L
label, O

1:L
Bo

) and L1:L
occ,Bs

= wBCE(O1:L
label, O

1:L
Bs

).

In our implementation, we use a class weight of 20 for the occupied voxels in the weighted binary cross-entropy computation.

Instance Mask-Matching Loss Lmask. Our transformer decoder predicts class-agnostic instance masks over the completed
3D volume. To compute Lmask, we perform a one-to-one Hungarian matching between predicted masks and pseudo-labeled
instance masks. Unlabeled voxels are ignored both during Hungarian matching as well as mask loss computation to avoid
penalizing predictions outside the limited pseudo-labeled regions. Following previous work on 3D instance-segmentation,
we define:

Lmask = λCE LCE + λDice LDice,

where LCE and LDice are per-voxel binary cross-entropy and Dice terms, respectively, and λCE, λDice are scaling factors.
We set λCE = 2.0, λDice = 1.0 in our experiments and apply an overall factor λmask when adding to (1).

CLIP Distillation Loss LCLIP. Simultaneously, our transformer regresses CLIP features per predicted instance to align
with the pseudo-labeled embeddings, as also described in the main text. We use a cosine embedding loss between predicted

17

Towards Learning to Complete Anything in Lidar

CLIP embeddings, and the pseudo-label GT embedding associated with the matched instance mask:

LCLIP = CosineEmbeddingLoss(pred embeds, gt embeds).

This ensures that predicted instance-level embeddings preserve the semantic structure learned by CLIP. We weight LCLIP

by λCLIP in (1).

Further Implementation Details and Model Overview. Our model consists of 118M trainable parameters in total, with
8.2M parameters allocated to the transformer predictor and 59.3K parameters for the CylinderFeat backbone. We train
the model for 50 epochs on 8 NVIDIA A100 GPUs, using a batch size of 8 with 1 item per GPU, and a learning rate of
0.0001. As also described earlier in A.4, we follow (Behley et al., 2019) and define a voxel grid volume extending 51.2 m
forward, 25.6 m to the sides, and 6.4 m in height, with a voxel size of 0.2m. We adopt this setting for both model training
and inference. During training, we treat all pseudo-labeled instances equally, making no distinction between stuff and
things—our approach is entirely zero-shot and class-agnostic. All unlabeled voxels are ignored during loss computation for
Lmask and Lprot, ensuring no penalty for predictions outside the spatial coverage of pseudo-labeled instances.

C. Additional Evaluation Details and Analysis
C.1. Dataset and Implementation Details

Datasets and benchmarks. We follow prior work (Cao et al., 2024) and evaluate CAL on two datasets that provide semantic
and instance-level labels for PSC: SSCBench-KITTI360 (Li et al., 2024; Liao et al., 2021) and SemanticKITTI (Behley
et al., 2019; Geiger et al., 2012; 2013) whose instance-level labels are provided in (Cao et al., 2024). These datasets provide
per-voxel semantic labels (SemanticKITTI: 20 classes, 8 are thing; SSCBench-KITTI360: 19 classes, 6 are thing) that
we only use during evaluation. Data was recorded using a 64-beam Velodyne Lidar sensor at 10Hz, accompanied by a
front RGB stereo camera (camera placement differs across the two datasets, that were recorded in different periods). We
only utilize the left front RGB camera for pseudo-labeling, but we only use the Lidar scans at inference time, not requiring
any camera data. During temporal accumulation of pseudo-labels (Fig. 2, 3⃝), we identify and remove dynamic objects in
KITTI-360 using 3D object tracks. For SemanticKITTI, we follow the original benchmark (Behley et al., 2019) and keep
spatio-temporal moving object tubes for consistency with supervised baseline methods.

Data statistics. To have a fair comparison between our method and the supervised panoptic completion methods reported
by Cao et al. (2024), we generate pseudo-labels for the same Lidar scans that were used for training these methods. More
specifically, for SemanticKITTI, we use one scan in every 5 scans, resulting in a total of 4649 pseudo-label samples. For
KITTI-360, we use the Lidar scan IDs used in SSCBench-KITTI360, resulting in 8487 training scans, 1780 validation scans,
and 2165 test scans as pseudo-labels. While we limited our training data scale for fair comparison, our pseudo-labeling
engine can label an arbitrary number of samples if desired, enabling easy scaling of data size.

Text prompt tuning. For our PSC and SSC experiments, we follow the prompt-tuning strategy from previous work (Osep
et al., 2024), and we define per-class text prompts for SemanticKITTI and KITTI-360 by associating each semantic class
with multiple potential queries describing the class, resulting in a more informative set of prompts. For instance, the query
“car” can be addressed by “car, jeep, SUV, van” or the query “bicycle” can be addressed by “bicycle, bike”. Full list of such
queries can be found in “Table E.1: Dataset vocabulary text prompts” of SAL (Osep et al., 2024). We also employ the
additional text prompt augmentation strategy from Osep et al. (2024) by including different variants of sentence structures
describing the semantic class in an open-vocabulary setting. Overall similarity between a predicted CLIP feature and a
semantic class is obtained by averaging the per-prompt similarity obtained for all prompts for this class.

C.2. Additional Ablations for the Pseudo-Labeling Engine

In this section, we provide additional ablation studies and further analysis on our pseudo-labeling engine.

Parameter analysis. First, in Tab. 9, we present an ablation on the key hyperparameters governing the pseudo-label
aggregation process. In the main paper, we provided the SO setting for this experiment to decouple tracking and completion
performance from the CLIP feature quality. To complement this, here we share the ZS counterpart of this experiment.
Particularly, we ablate the affect of the number of frames for mask propagation Tfw (forward) and Tbw (backward), as well
as the stride, w. This table presents the performance metrics for various combinations of these parameters (Tfw, Tbw, w)

18

Towards Learning to Complete Anything in Lidar

evaluated on the KITTI-360 validation set using PSC and SSC parameters PQ†, PQ, SQ, RQ, IoU, mIoU. We additionally
report the relative number of time units required to obtain pseudo-labels for each setting, as well as the average pseudo-label
coverage achieved with respect to the GT labels. To ensure consistency across different parameter settings, we perform
these measurements before performing CRF.

Table 9. Pseudo-labeling engine ablations using CLIP semantics. This table presents an analysis on the key parameters of the
pseudo-label aggregation process: the number of frames for tracking Tfw and Tbw, as well as the stride, w.

Parameters All Thing Stuff SSC Time Label
Tfw Tbw w PQ†↑ PQ↑ SQ RQ PQ SQ RQ PQ SQ RQ IoU↑ mIoU↑ tk ↓ Cov.↑

8 0 2 6.30 0.35 21.94 0.63 0.57 37.90 1.01 0.24 13.96 0.43 13.47 5.54 1 14.50
16 0 2 7.91 2.17 24.99 3.78 1.26 46.71 2.26 2.63 14.12 4.55 18.97 7.28 2 20.32
32 0 2 8.61 3.25 25.70 5.33 1.34 47.97 2.37 4.21 14.56 6.81 22.00 8.23 4 23.31
48 0 2 8.70 3.34 25.75 5.45 1.34 48.06 2.37 4.34 14.59 6.99 22.07 8.34 6 23.32

32 0 2 8.61 3.25 25.70 5.33 1.34 47.97 2.37 4.21 14.56 6.81 22.00 8.23 4 23.31
32 4 2 9.32 3.71 28.85 5.95 1.82 56.40 3.25 4.66 15.08 7.30 24.51 8.96 4.5 26.13
32 8 2 10.04 3.96 25.80 6.32 2.25 47.15 4.01 4.82 15.12 7.48 25.62 9.32 5 27.38

16 4 4 8.73 3.17 27.68 5.37 1.45 54.73 2.67 4.03 14.15 6.72 22.09 8.37 2.5 23.47
32 8 2 10.04 3.96 25.80 6.32 2.25 47.15 4.01 4.82 15.12 7.48 25.62 9.32 5 27.38
64 16 1 10.63 4.41 28.98 6.93 3.11 57.07 5.48 5.06 14.93 7.65 27.94 9.87 10 29.98

How well is our pseudo-label quality in the high-coverage area? Our pseudo-labeled dataset covers only a limited
portion of the full grid compared to the ground truth (70.14% for SemanticKITTI and 50.48% for KITTI-360) due to
occasional failures in SAM2 mask detection or tracking across the video sequence, leading to missing label areas in the
voxel grid. The panoptic scene completion evaluation using pseudo-labels penalizes these missing areas when performed
over the full voxel grid (full-grid eval). To better assess the CLIP feature and instance-level completion performance of our
pseudo-labels in areas for which we do have labels, we also evaluate performance restricted to areas with pseudo-labels
by masking out excluded voxels (masked-voxel eval) in Tab. 10. The difference between full-grid and masked-voxel
evaluations highlights that where completion signals exist, CLIP features and instance masks are generally informative
and well-separated. However, the observed gap underscores the limited label coverage of pseudo-labels, which could be
improved through enhancements in pseudo-label construction or training augmentations in future work.

Table 10. Pseudo-label evaluation restricted to the areas in the voxel grid for which we have pseudo-labels. Analysis of the accuracy
of pseudo-labels on the SemanticKITTI (Behley et al., 2019) validation set. The full-grid eval setting refers to evaluating our pseudo-labels
using the usual PSC evaluation with respect to the GT. The masked-voxel eval setting refers to excluding the voxels for which we don’t
have any pseudo-labels during PSC evaluation.

Semantic KITTI(Behley et al., 2019) (val set)
All Thing Stuff

PQ†↑ PQ↑ SQ RQ PQ SQ RQ PQ SQ RQ mIoU↑

Pseudo-labels (full-grid eval)
CAL (Sem. oracle) 25.90 17.71 64.06 26.55 16.93 67.91 23.75 18.28 61.25 28.58 33.10
CAL (CLIP Semantics) 16.98 10.67 54.02 16.19 7.30 67.19 10.21 13.12 44.43 20.54 20.62

Pseudo-label (masked-voxel eval)
CAL (Sem. oracle) 33.20 26.09 68.05 36.62 20.57 69.39 28.21 30.10 67.07 42.74 42.37
CAL (CLIP sem.) 20.89 15.65 62.36 22.42 8.34 68.53 11.48 20.97 57.87 30.37 25.47

Discussion on the possibility of pseudo-labeling efficiency. Video-object localization over long video sequences is costly,
particularly due to the costs associated with SAM2 (Ravi et al., 2024) mask propagation, which often results in a single
pseudo-label pair to be generated in the order of a few minutes. Since this process can be costly, we also investigated
whether it is possible to make the overall process more efficient by reducing the number of frames that one needs to process
and aggregate for a single pseudo-labeled training sample. To do so, we experimented with reducing the number of required
frames in conjunction with CRF-refinement, as in our earlier experiments we observed that CRF plays a significant role in
improving the completion of scene objects. Therefore, we designed an experiment where, instead of using a long tracking
horizon (Tfw = 32, Tbw = 8), we used a short tracking horizon but also performed CRF refinement. Tab. 11 presents
our findings from this experiment on SemanticKITTI, using the SO evaluation setting. In the first block of Tab. 11, we
propagate masks from reference frame for Tfw = 8 frames (FW), and compare to the second block with our original
setting(Tfw = 32, Tbw = 8), after CRF-based mask propagation. Here we see that while using a long-tracking horizon
improves completion performance, it is also possible to instead use a shorter horizon in conjunction with CRF to reduce

19

Towards Learning to Complete Anything in Lidar

video-object localization prcessing time. We believe that this observation might be relevant for future scaling efforts by
saving processing time, and enabling the more sparse labeling of sequences for future data-scaling endeavors.

Table 11. Impact of the number of frames on completion quality with CRF on Semantic KITTI (Behley et al., 2019) (val). This study
demonstrates that CRF significantly enhances completion quality, allowing the use of fewer frames in the pseudo-labeling pipeline which
is computationally expensive due to the costly mask propagation step. The first block evaluates mask tracking over 8 frames, while the
second block uses our original setting with 32 frames forward and 8 frames backward tracking.

Semantic KITTI(Behley et al., 2019) (val set)
All Thing Stuff Label

PQ†↑ PQ↑ SQ RQ PQ SQ RQ PQ SQ RQ mIoU Cov.↑

Tfw = 8, Tbw = 0, with CRF
CAL (SO) 22.06 11.41 62.01 17.79 14.16 67.90 20.25 9.40 57.73 16.00 27.00 52.36
CAL (CS) 13.53 5.65 50.30 8.92 5.53 62.06 7.68 5.74 41.72 9.82 15.46 52.36

Tfw = 32, Tbw = 8, with CRF
CAL (SO) 25.90 17.71 64.06 26.55 16.93 67.91 23.75 18.28 61.25 28.58 33.10 70.13
CAL (CS) 16.98 10.67 54.02 16.19 7.30 67.19 10.21 13.12 44.43 20.54 20.62 70.13

C.3. Additional Ablations and Analysis for the Model Performance

Training data ablations for model training. In the main paper, we discussed the improvements that CRF-refinement brings
to pseudo-label quality, demonstrated in Tab. 3. In this section, we also discuss the effect of training with pseudo-labels with
and without CRF-refinement on the model performance for completeness. The findings from this experiment are presented
in Tab. 12 and Tab. 13. We observe that training with pseudo-labels that use CRF-refinement (resulting in higher label
coverage) clearly improves PQ† as well as PQthing , SQthing and RQthing results. However, we see that Stuff categories are
negatively impacted by this variant for the SSCBench-KITTI360 dataset, which we suspect is due to CRF being relatively
less effective in successfully propagating labels in KITTI360 dataset, where our binary occupancy coverage is only around
70% compared to the setting in SemanticKITTI where we reach almost 100% binary occupancy coverage. This is important,
because CRF can only propagate labels towards unlabeled but occupied areas. Overall, it is evident that CRF refinement
brings significant benefits to zero-shot PSC performance.

Table 12. Model ablations for data on SemanticKITTI. We train the CAL model using two different sets of data: pseudo-labels w/o
CRF refinement, and pseudo-labels with CRF refinement. We report PSC metrics for both variants individually. We observe that training
CAL with data that has higher label coverage, (pseudo labels w. CRF) clearly improves overall performance.

Training data for CAL All Thing Stuff SSC

Setting PQ†↑ PQ↑ SQ RQ PQ SQ RQ PQ SQ RQ mIoU↑

Pseudo Labels w/o CRF
Semantic oracle 12.25 3.60 43.86 5.98 0.77 41.06 1.40 5.65 45.89 9.31 15.37
CLIP semantics 9.65 3.27 26.27 5.40 0.32 20.47 0.57 5.43 30.48 8.90 9.40

Pseudo Labels w. CRF
Semantic oracle 17.12 6.27 43.40 10.06 3.48 44.39 5.65 8.30 42.67 13.27 20.71
CLIP semantics 13.12 5.26 27.45 8.44 2.42 22.79 3.89 7.33 30.84 11.76 13.09

Pseudo-labels vs. model predictions. In this section, we analyze the gap between our pseudo-labels and model predictions
(both evaluated on the SemanticKITTI validation set; semantic classes are assigned based on CLIP-feature prompting).
We note that our model is only given a single Lidar point cloud input and predicts occupancy, segmentation masks, and
corresponding CLIP features used for prompting. On the other hand, pseudo-labels are obtained by (i) segmenting objects in
images/video, (ii) averaging CLIP features, extracting from images, and (iii) accumulating Lidar measurements across a
temporal window. Pseudo-labels, therefore, derive occupancy estimates from geometry observed from multiple views, and
semantic features from visual information, while the model must rely on learned occupancy priors and semantic features
distilled from the image- to the Lidar domain. In the semantic oracle setting, our model obtains 17.12 PQ† (66.10 % of
pseudo-labels), and 13.12 (77.27 % of pseudo-labels), suggesting that currently, the bottleneck is instance-level completion.
Finally, we note that this gap is not surprising and largely stems from the inherent task difficulty- state-of-the-art PSC model
(Cao et al., 2024) obtains 19.53 PQ† (26.29 when ensembling models, see Tab. 14) when trained on perfect GT data, and
classes are known a-priori.

20

Towards Learning to Complete Anything in Lidar

Table 13. Model ablations for data on SSCBench-KITTI360 (Li et al., 2024). We train the CAL model using two different sets of data:
pseudo-labels w/o CRF refinement, and with CRF refinement. We report PSC metrics for both variants individually. We observe that
training CAL with data that has higher label coverage, (pseudo labels w. CRF) clearly improves overall performance except for stuff
categories.

Training data for CAL All Thing Stuff SSC

Setting PQ†↑ PQ↑ SQ RQ PQ SQ RQ PQ SQ RQ mIoU↑

Pseudo Labels w/o CRF
Semantic oracle 9.85 2.96 18.41 4.77 0.06 18.42 0.11 4.42 18.40 7.11 10.15
CLIP semantics 7.01 2.89 15.56 4.66 0.04 18.49 0.07 4.31 14.10 6.95 7.34

Pseudo Labels w. CRF
Semantic oracle 12.56 1.71 33.18 3.10 2.05 45.57 3.76 1.54 26.99 2.76 13.34
CLIP semantics 8.57 1.46 21.01 2.63 1.39 27.62 2.54 1.49 17.81 2.68 8.49

Table 14. Panoptic Scene Completion. On Semantic KITTI (Behley et al., 2019) (val) and SSCBench-KITTI360 (Li et al., 2024) (test).
Compared against LMSCNet (Roldao et al., 2020) +MaskPLS (Marcuzzi et al., 2023), JS3CNet (Yan et al., 2021) +MaskPLS (Marcuzzi
et al., 2023), SCPNet (Xia et al., 2023) +MaskPLS (Marcuzzi et al., 2023) and PaSCo (Cao et al., 2024) (M=1 and ensemble).

Semantic KITTI(Behley et al., 2019) (val set) SSCBench-KITTI360 (Li et al., 2024) (test set)
All Thing Stuff All Thing Stuff

Method PQ†↑ PQ↑ SQ RQ PQ SQ RQ PQ SQ RQ mIoU↑ PQ†↑ PQ↑ SQ RQ PQ SQ RQ PQ SQ RQ mIoU↑

Fully supervised
LMSCNet +MaskPLS 13.81 4.17 36.13 6.82 1.62 29.87 2.68 6.02 40.69 9.82 17.02 12.76 4.14 26.52 6.45 0.88 20.41 1.58 5.78 29.58 8.88 15.10
JS3CNet +MaskPLS 18.41 6.85 41.90 11.34 4.18 43.10 7.22 8.79 41.03 14.34 22.70 16.42 6.79 51.16 10.71 3.36 48.41 5.83 8.51 52.54 13.15 21.31
SCPNet +MaskPLS 19.39 8.59 49.49 13.69 4.88 46.41 7.70 11.30 51.73 18.04 22.44 16.54 6.14 51.18 10.15 4.23 48.46 7.05 7.09 52.55 11.70 21.47
PaSCo (M=1) 26.49 15.36 54.15 23.65 12.33 47.42 18.78 17.55 59.05 27.19 28.22 19.53 9.91 58.81 15.40 3.46 57.72 6.10 13.14 59.35 20.05 21.17
PaSCo (Ensemble) 31.42 16.51 54.25 25.13 13.71 48.07 20.68 18.54 58.74 28.38 30.11 26.29 10.92 56.10 17.09 4.88 57.53 8.48 13.94 55.39 21.39 22.39

Pseudo-labels
CAL (Semantic oracle) 25.90 17.71 64.06 26.55 16.93 67.91 23.75 18.28 61.25 28.58 33.10 14.75 4.57 40.79 7.98 7.08 48.18 12.35 3.32 37.10 5.79 17.14
CAL (CLIP semantics) 16.98 10.67 54.02 16.19 7.30 67.19 10.21 13.12 44.43 20.54 20.62 10.98 3.18 33.95 5.58 3.91 48.30 6.86 2.82 26.78 4.95 11.04

Zero-Shot
CAL (Semantic oracle) 17.12 6.27 43.40 10.06 3.48 44.39 5.65 8.30 42.67 13.27 20.71 12.56 1.71 33.18 3.10 2.05 45.57 3.76 1.54 26.99 2.76 13.34
CAL (CLIP semantics) 13.12 5.26 27.45 8.44 2.42 22.79 3.89 7.33 30.84 11.76 13.09 8.57 1.46 21.01 2.63 1.39 27.62 2.54 1.49 17.81 2.68 8.49

Per-class results. In Tab. 15, we provide a detailed per-class break-down of the pseudo-label quality and model performance
for the SemanticKITTI dataset. We notice that most of the gap between CAL and the baselines is due to rare classes (e.g.,
pedestrian, cyclist), which suggests that fully supervised baselines can exploit class frequency information during
training—allowing them to re-balance and weight examples in a way that benefits rare categories. In contrast, because our
approach is zero-shot, it does not have access to the ground-truth frequency distributions of classes, and thus it struggles
more with less frequent or smaller structures. Additionally, since we rely on K-means for clustering, our method does not
incorporate prior knowledge of the data distribution or class frequencies, making it less effective in representing long-tail
categories. While this limitation is challenging to address under the zero-shot paradigm, future work could explore more
distribution-aware clustering techniques or other strategies that better capture underrepresented object shape priors without
relying on labeled data.

C.4. Additional Qualitative Results

In Fig. 7, we share qualitative results from our model’s predictions on the KITTI360 dataset. In Fig. 8, we compare our
method CAL with zero-shot baselines for the panoptic scene completion task. We also provide a supplementary video
visualizing zero-shot panoptic scene completion results for a sequence of Lidar scans.

21

Towards Learning to Complete Anything in Lidar

Table 15. Per-class performance analysis for Panoptic Scene Completion, evaluated on SemanticKITTI (Behley et al., 2019) dataset.
Per-class scores for the baselines and class-frequencies are taken from (Cao et al., 2024).

Method ■
ca

r(
3.

92
%

)

■
bi

cy
cl

e
(0

.0
3%

)

■
m

ot
or

cy
cl

e
(0

.0
3%

)

■
tr

uc
k

(0
.1

6%
)

■
ot

he
r-

ve
h.

(0
.2

0%
)

■
pe

rs
on

(0
.0

7%
)

■
bi

cy
cl

is
t(

0.
07

%
)

■
m

ot
or

cy
cl

is
t(

0.
05

%
)

■
ro

ad
(1

5.
30

%
)

■
pa

rk
in

g
(1

.1
2%

)

■
si

de
w

al
k

(1
1.

13
%

)

■
ot

he
r-

gr
nd

(0
.5

6%
)

■
bu

ild
in

g
(1

4.
10

%
)

■
fe

nc
e

(3
.9

0%
)

■
ve

ge
ta

tio
n

(3
9.

30
%

)

■
tr

un
k

(0
.5

1%
)

■
te

rr
ai

n
(9

.1
7%

)

■
po

le
(0

.2
9%

)

■
tr

af
.-s

ig
n

(0
.0

8%
)

m
ea

n

PQ

LMSCNet + MaskPLS 9.43 0.00 0.76 2.32 0.00 0.47 0.00 0.00 53.53 1.82 5.63 0.00 0.26 0.19 0.00 0.27 3.52 1.00 0.00 4.17
JS3CNet + MaskPLS 9.57 1.07 4.19 17.54 0.91 0.12 0.00 0.00 58.45 5.32 15.89 0.00 1.02 1.33 0.00 0.76 13.63 0.28 0.00 6.85
SCPNet + MaskPLS 18.44 4.84 6.72 4.42 2.79 1.81 0.00 0.00 63.89 7.92 19.92 0.00 3.11 3.28 0.13 2.29 21.55 1.99 0.17 8.59
PaSCo (Ensemble) 24.55 7.82 18.09 44.89 11.32 3.00 0.00 0.00 76.22 28.12 30.42 1.33 4.85 0.27 12.97 4.22 32.61 9.69 3.26 16.51
CAL 14.11 0.00 0.00 4.34 0.88 0.00 0.00 0.00 54.08 0.00 3.09 0.00 0.12 0.00 1.00 0.00 22.20 0.14 0.00 5.26
CAL - Pseudo Labels 20.24 1.38 7.29 8.88 5.29 1.06 13.03 1.21 62.60 1.93 8.50 0.00 12.48 0.00 33.55 0.00 23.20 1.04 1.22 10.67

SQ

LMSCNet + MaskPLS 62.65 0.00 53.44 53.87 0.00 69.00 0.00 0.00 63.30 57.83 52.70 0.00 53.93 52.58 0.00 59.76 54.12 53.37 0.00 36.13
JS3CNet + MaskPLS 59.88 53.79 55.17 57.73 55.70 62.50 0.00 0.00 65.98 55.70 54.53 0.00 52.62 53.41 0.00 55.01 56.38 57.68 0.00 41.90
SCPNet + MaskPLS 66.69 57.78 65.30 55.30 65.15 61.01 0.00 0.00 68.56 58.72 55.81 0.00 54.94 54.45 51.04 55.58 59.86 52.97 57.14 49.49
PaSCo (Ensemble) 70.10 57.84 67.00 67.33 62.15 60.14 0.00 0.00 77.52 62.62 59.95 54.71 55.87 51.29 52.85 57.50 63.88 54.78 55.17 54.25
CAL 65.84 0.00 0.00 52.80 63.71 0.00 0.00 0.00 63.05 0.00 54.81 0.00 50.02 0.00 51.47 0.00 62.58 57.32 0.00 27.45
CAL - Pseudo Labels 74.38 54.58 67.01 74.56 74.12 64.88 71.65 56.35 69.14 58.48 58.24 0.00 56.52 0.00 57.95 0.00 68.15 60.64 59.67 54.02

R
Q

LMSCNet + MaskPLS 15.05 0.00 1.42 4.30 0.00 0.67 0.00 0.00 84.56 3.15 10.69 0.00 0.48 0.37 0.00 0.45 6.50 1.87 0.00 6.82
JS3CNet + MaskPLS 15.98 2.00 7.59 30.38 1.63 0.20 0.00 0.00 88.59 9.55 29.14 0.00 1.93 2.49 0.00 1.39 24.17 0.48 0.00 11.34
SCPNet + MaskPLS 27.65 8.38 10.29 8.00 4.28 2.96 0.00 0.00 93.18 13.50 35.69 0.00 5.66 6.03 0.25 4.12 36.00 3.76 0.30 13.69
PaSCo (Ensemble) 35.03 13.51 27.00 66.67 18.21 4.98 0.00 0.00 98.32 44.91 50.73 2.44 8.69 0.52 24.54 7.33 51.05 17.70 5.91 25.13
CAL 21.52 0.00 0.00 8.22 1.39 0.00 0.00 0.00 85.77 0.00 5.64 0.00 0.24 0.00 1.94 0.00 35.47 0.24 0.00 8.44
CAL - Pseudo Labels 27.21 2.54 10.88 11.91 7.14 1.64 18.18 2.15 90.54 3.31 14.60 0.00 22.08 0.00 57.89 0.00 33.75 1.72 2.04 16.19

22

Towards Learning to Complete Anything in Lidar

Input Scan Completion + Masks ZS Prompting

“vehicle”

“car”

“tree”

“road”

“façade”

“sidewalk”

Figure 7. Qualitative results on KITTI-360 (Liao et al., 2021). Given a single Lidar scan as input (1st column), CAL completes
object-level observations as a set of masks over the voxel grid (2nd column) with semantic CLIP feature for each predicted mask. We can
prompt with any semantic class vocabulary and perform panoptic and semantic scene completion (3rd column).

23

Towards Learning to Complete Anything in Lidar

Input Scan LiDiff + SAL LODE + SAL Ours (CAL) Ground Truth

Figure 8. Qualitative comparison to zero-shot baselines on SemanticKITTI. Given a single Lidar scan (1st col.), we compare our
method (CAL, 4th col.) to zero-shot baselines (2nd and 3rd cols.) combining LiDiff (Nunes et al., 2024) and LODE (Li et al., 2023b)
with SAL (Osep et al., 2024). While baselines struggle with coherent structure and semantic accuracy, CAL produces cleaner and more
complete outputs that align closely with the ground truth.

24

