
Preprint

NEURAL EULERIAN SCENE FLOW FIELDS

Kyle Vedder1,2∗ Neehar Peri2,3 Ishan Khatri3 Siyi Li1 Eric Eaton1

Mehmet Kocamaz2 Yue Wang2 Zhiding Yu2 Deva Ramanan3 Joachim Pehserl2
1University of Pennsylvania 2NVIDIA 3Carnegie Mellon University

(a) Small object motion extraction... (b) ...in diverse, dynamic scenes... (c) ...with emergent 3D point tracking behavior!

Figure 1: EulerFlow is able to capture the motion of small, fast moving objects with few lidar points,
such a bird flying in front of an autonomous vehicle (Figure 1a). EulerFlow’s flexibility allows it
to estimate scene flow for fast-moving table top objects without additional hyperparameter tuning
(Figure 1b). EulerFlow’s ODE estimate exhibits emergent 3D point tracking behavior without explicit
long-horizon supervision (Figure 1c). Note that point clouds are shown in color for visualization
purposes only; RGB is not used during optimization.

ABSTRACT

We reframe scene flow as the task of estimating a continuous space-time ordinary
differential equation (ODE) that describes motion for an entire observation se-
quence, represented with a neural prior. Our method, EulerFlow, optimizes this
neural prior estimate against several multi-observation reconstruction objectives,
enabling high quality scene flow estimation via self-supervision on real-world data.
EulerFlow works out-of-the-box without tuning across multiple domains, including
large-scale autonomous driving scenes and dynamic tabletop settings. Remarkably,
EulerFlow produces high quality flow estimates on small, fast moving objects like
birds and tennis balls, and exhibits emergent 3D point tracking behavior by solving
its estimated ODE over long-time horizons. On the Argoverse 2 2024 Scene Flow
Challenge, EulerFlow outperforms all prior art, surpassing the next-best unsuper-
vised method by more than 2.5×, and even exceeding the next-best supervised
method by over 10%. See vedder.io/eulerflow for interactive visuals.

1 INTRODUCTION

Scene flow estimation is the task of describing motion with per-point 3D motion vectors between
temporally successive point clouds (Dewan et al., 2016; Liu et al., 2019; Erçelik et al., 2022; Jund
et al., 2021; Zhang et al., 2024b; Vedder et al., 2024; Khatri et al., 2024). Such per-point motion
estimates are critical for autonomy in diverse environments, e.g., maneuvering around open-world
objects like debris (Peri et al., 2022a) or folding deformable cloth (Weng et al., 2022). Importantly,
scene flow estimation requires not only an understanding of object geometry, but also its motion.
However, scene flow methods broadly do not work on smaller objects (Khatri et al., 2024). For
example, in the autonomous vehicles domain, Khatri et al. highlight that even supervised methods
struggle to describe the majority of pedestrian motion, with unsupervised methods failing dramatically.
Scene flow promises to be a powerful primitive for understanding the dynamic world, but such failures
explain why it has limited adoption in downstream applications like tracking (Zhai et al., 2020) or
open-world object extraction (Najibi et al., 2022).

∗Corresponding email: kvedder@seas.upenn.edu

1

ar
X

iv
:2

41
0.

02
03

1v
2 

 [
cs

.C
V

] 
 2

8 
O

ct
 2

02
4

https://vedder.io/eulerflow


Preprint

(a) EulerFlow (Two Frame) (b) Fast NSF (Two Frame) (c) Liu et al. (Two Frame) (d) Ground Truth (Two Frame)

(e) EulerFlow (Full Sequence) (f) Fast NSF (Full Sequence) (g) Liu et al. (Full Sequence) (h) Ground Truth (Full Sequence)

Figure 2: We visualize an example of five pedestrians crossing the street in front of a stopped car,
cherrypicked to have unusually high density lidar returns, making it particularly easy to estimate
flow. Figures 2a–2d depict a two-frame flow visualization of EulerFlow and several strong baselines.
Notably, only visualizing flow over two frames makes it difficult to distinguish flow quality. In
contrast, Figures 2e–2h depict flow vectors over the full sequence, making differences in quality
clear; for example, EulerFlow is the only one without artifacts on the stopped car.

Scene Flow via ODE. In Figure 2, visual assessment of scene flow quality is much easier in an
accumulated global frame; while incomplete due to an implicit time axis, these accumulated flow
vectors allow viewers to imagine how positions in 3D space evolve over many timesteps, and compare
that to predicted flows. This imagination of scene flow as continuous motion over large time intervals
motivates us to model scene flow as an ordinary differential equation (ODE) that describes the scene’s
instantaneous motion across continuous position and time. Scene flow estimation then becomes the
task of estimating this ODE. We can straightfowardly represent this ODE estimate with a neural
prior (Li et al., 2021b) and optimize it against scene flow surrogate objectives, both over single frame
pairs and extended across arbitrary time intervals to produce better quality estimates. We formalize
this in Section 3 and propose the Scene Flow via ODE framework.

EulerFlow. We instantiate Scene Flow via ODE with standard point cloud distance objectives like
Chamfer Distance to create EulerFlow. Notably, EulerFlow outperforms all prior art, supervised
or unsupervised, on the Argoverse 2 2024 Scene Flow Challenge and Waymo Open Scene Flow
benchmark. It outperforms prior unsupervised methods by a large margin (> 2.5× mean dynamic
error reduction), and is able to capture small, fast moving objects, including those outside of labeled
taxonomies (e.g. the flying bird in Figure 1a). Due to its simplicity, EulerFlow is able to provide high
quality scene flow out-of-the-box on real-world data for other important domains such as dynamic
tabletop settings (Figure 1b) without domain-specific tuning. Finally, we show that simple ODE
solving techniques like Euler integration can be used to extract 3D point tracks (Figure 1c), which
serves as both an exciting emergent behavior as well as a mechanism for visualizing and interpreting
the quality of the continuous ODE estimate.

We present four primary contributions:

• We propose Scene Flow via ODE (SFvODE), a reframing of scene flow estimation as the task of
fitting an ODE that describes the change of continuous positions over continuous time, unlocking a
new class of surrogate objectives that enable better scene flow estimates.

• We instantiate SFvODE with EulerFlow, a flexible unsupervised scene flow method that achieves
state-of-the-art performance on the Argoverse 2 2024 Scene Flow Challenge, beating all prior
supervised and unsupervised methods.

• We study EulerFlow and show its strong performance is derived from its ability to optimize its
ODE estimate against the full sequence of observations over arbitrary time horizons.

• We show that EulerFlow’s simple, flexible formulation allows it to run unmodified on a variety of
domains, with emergent capabilities like 3D point tracking behavior.

2



Preprint

2 BACKGROUND AND RELATED WORK

Evaluation. Dewan et al. formalized scene flow for point clouds as the task of estimating motion
between point cloud Pt at time t and point cloud Pt+1 at t+ 1 by estimating the true flow Ft,t+1,
i.e. true residual vectors for every point in Pt that describe its movement to its associated position at
t+1. Error is computed by measuring the per-point endpoint distance between estimated and ground
truth vectors. Historically, these errors are reported with a per-point average (Average EPE); however,
as Chodosh et al. show, Average EPE is dominated by background points, preventing meaningful
measurement of non-ego object motion descriptions. Khatri et al. address this shortcoming with
Bucket Normalized EPE, which reports per-class performance normalized by speed, allowing for
direct comparisons across classes with very different average speeds (e.g. pedestrians and cars).
Bucket Normalized EPE is the basis for the Argoverse 2024 Scene Flow Challenge1, where methods
are ranked by the mean error of their motion descriptions (mean Dynamic Normalized EPE).

Input / Output Formulation. Dewan et al.’s choice to formulate scene flow using only two input
frames is arbitrary; it’s the minimal information needed to extract rigid motion, but there are not
real-world problems constrained to only have access to two frames. Indeed, using five or ten frames of
past observations is standard practice in the 3D detection literature (Zhu et al., 2019; Vedder & Eaton,
2022; Peri et al., 2022b; 2023; Nalty et al., 2022), and multi-frame formulations have started to appear
in the scene flow literature: Liu et al. (2024) and Flow4D (Kim et al., 2024) use three (Pt−1, Pt, Pt+1)
and five input frames (Pt−3, . . . , Pt+1) respectively to predict F̂t,t+1. As we discuss in Section 3,
rather than just using more observations to estimate flow for a single frame pair, we formulate scene
flow as a joint estimation problem: given the full observation sequence (P0, . . . , PN ), we estimate
all flows F̂0,1, . . . , F̂N−1,N between all adjacent observations.

Feedforward Methods. Feedforward networks are a popular class of scene flow methods due to their
fast inference speed (Liu et al., 2019; Behl et al., 2019; Tishchenko et al., 2020; Kittenplon et al.,
2021; Wu et al., 2020; Puy et al., 2020; Li et al., 2021a; Jund et al., 2021; Gu et al., 2019; Battrawy
et al., 2022; Wang et al., 2022b; Kim et al., 2024; Zhang et al., 2024a). While they are often trained
with supervised labels, recent work has developed distillation pipelines that leverage unsupervised
pseudolabelers (Vedder et al., 2024; Zhang et al., 2024b; Lin & Caesar, 2024).

Neural Scene Flow Prior. Li et al. (2021b) propose Neural Scene Flow Prior (NSFP), a widely
adopted unsupervised scene flow approach. NSFP uses the inductive bias of the smooth, restricted
learnable function class of two ReLU MLP coordinate networks (8 hidden layers of 128 neurons); θ
to estimate forward flow and θ′ to estimate backwards flow, minimizing

TruncatedChamfer(Pt + θ (Pt) , Pt+1) +
∥∥Pt + θ (Pt) + θ′ (Pt + θ (Pt))− Pt

∥∥
2

, (1)

where TruncatedChamfer is defined as the standard L2 Chamfer distance, but with per-point distances
above 2 meters set to zero in order to reduce the influence of outliers. NSFP is optimized for at most
1000 steps with early stopping.

Motion Beyond Two Frames. Wang et al. (2022a) tackles the adjacent problem of estimating 3D
point trajectories over 25 frames with Neural Trajectory Prior (NTP) by jointly optimizing three
separate ReLU MLP neural priors: 1) a sinusoidal embedded, time conditioned, 25 frame trajectory
basis estimator (embed(t) 7→ 256×25×3 tensor, where 256 is the dimension of the trajectory basis),
2) a coordinate network bottleneck encoder, and 3) a bottleneck decoder to estimate a per-point linear
combination over the learned trajectories. Trajectories are optimized for both a one-frame lookahead
L2 Chamfer loss and a cyclic consistency loss over the entire velocity space trajectory.

Deformation in Reconstruction. Nerfies (Park et al., 2021) and DynamicFusion (Newcombe et al.,
2015) estimate a deformation field to warp a canonical frame to explain the observed frame. While
capable of describing small motions, these methods require a canonical frame that contains all of
the relevant geometry to deform; however, in large, highly dynamic scenes like autonomous driving,
there is often no frame that contains all moving objects. By comparison, Scene Flow via ODE does
not assume the existence of a canonical frame, instead only describing how the scene changes.

1https://www.argoverse.org/sceneflow

3

https://www.argoverse.org/sceneflow


Preprint

Position
Time

Direction

Flow
Vector

Observation
Minibatch

Arbitrary
Time Interval

Objectives

Optimization Loop

Full Observation Sequence Full Observation Sequence with Scene Flow

O
D

E 
Es

tim
at

e

Figure 3: Overview of our Scene Flow via ODE framework, which estimates an ODE across the
entire observation sequence by optimizing against multi-frame objectives. This ODE estimate is
represented with a neural prior (Li et al., 2021b), providing a flexible, general representation for
describing position-time motion.

3 SCENE FLOW VIA ODE

Prior art consumes multiple frames (Pt−N , . . . , Pt+1) as input, but these methods are ultimately only
tasked with estimating flow vectors between Pt and Pt+1. We instead pose the problem of estimating
a time-conditioned flow field that describes motion for all adjacent point clouds Pt, Pt+1 in the entire
sequence (P0, . . . , PN ). To do this, rather than describing scene flow as positional change over a
fixed interval (Ft,t+1 are residual vectors over the interval t to t + 1) as we did in Section 2, we
can instead express these changes as a differential equation that describes positional change over
continuous time.

Eulerian View Lagrangian View

A0B0C0

At Bt Ct

Figure 4: Comparison of Eulerian and Lagrangian descriptions of 2D flow. An Eulerian view
characterizes a flow field via instantaneous velocities at many different points, while a Lagrangian
view characterizes a flow field via trajectories of many different particles across time. Both approaches
are valid ways of describing an underlying flow field, and with sufficient characterization one view
can be readily converted to another, but the Lagrangian view relies on a definition of the definition of
consistent canonical frame.

Formally, given a scene, let L(x0, y0, z0, t) be the Lagrangian view of the scene’s true flow field, i.e.
a continuous function that, based on a canonical frame at time 0, describes the true position of the
canonical frame particle x0, y0, z0 at some other time t. As we discuss in Section 2, this Lagrangian
view is common in the the deformable reconstruction literature, and the requirement for a canonical
frame definition means these approaches struggle to describe scenes where there is no frame that
contains all moving objects.

To break this canonical frame dependence, we choose to take an Eulerian view of the flow field, i.e.
F = dL

dt , which describes the velocity of a query point at some arbitrary time. As we show in our
derivation in Appendix D, this formulation does not require point correspondences in some other
canonical frame when estimating a point’s trajectory from t to t′; instead, we can simply set the initial
conditions of the ODE at t to xt, yt, zt and utilize an off-the-shelf ODE solver (e.g. Euler integration)
to extract flow from t to t′, expressed as E(xt, yt, zt, t, t

′).

We do not know the true flow field F when estimating scene flow; however, we can represent F
with a neural prior θ (F ≈ θ), and optimize θ against surrogate objectives. This framing, which
we formalize into the Scene Flow via ODE framework (SFvODE; Figure 3), allows θ to benefit
from constructive interference between objectives, as well as enables us to formulate objectives over
arbitrarily long time horizons, unlocking high quality estimates.

4



Preprint

4 EULERFLOW

Scene Flow via ODE proposes a framework where the neural prior θ represents an estimate of the
Eulerian flow field F (i.e. F ≈ θ); however, it does not prescribe the optimization objectives for θ.
Thus, we instantiate Scene Flow via ODE with EulerFlow, a point cloud only scene flow method2

with reconstruction and cyclic consistency objectives across the entire sequence of observations.

As we show in Equation 17 (Appendix D.4), we can use θ’s Eulerian flow field estimate to extract an
estimated point trajectory from xt, yt, zt at t to some future location at time t′ via Euler integration
over θ without requiring a canonical frame definition, i.e. Eθ(xt, yt, zt, t, t

′). By extracting point
trajectories for every point p in Pt using Eθ, we can not only construct a two-frame scene flow
estimate of Ft,t+1, but also estimate flow to arbitrary future or prior timesteps (e.g. Ft,t+2 or Ft,t−1).
This allows us to optimize over multi-frame reconstruction objectives: we can now pose reconstruction
surrogate objectives between any two point clouds in our observation sequence, not just adjacent
point clouds Pt and Pt+1. Similarly, we can straightforwardly pose cyclic consistency objectives by
composing Ft,t+1 and Ft+1,t. Formally, for Pt’s Ft,t+k (for any k ∈ Z), we define

Eulerθ (Pt, k) = Pt + Ft,t+k = ∀p ∈ Pt : Eθ(pxt, pyt, pzt, t, t+ k) , (2)

enabling us to pose θ’s optimization objective ∀Pt ∈ (P0, . . . , PN ) across the window of size W

argmin
θ

∑ ∀k ∈ {−W, . . . ,W} \ {0} : TruncatedChamfer(Eulerθ (Pt, k) , Pt+k)
α ∥Eulerθ (Eulerθ (Pt, 1) ,−1)− Pt∥2

(3)

In practice, we set W to 3 and α to 0.01. We provide additional implementation details in Appendix C.
In order to optimize θ, our estimate of the Eulerian flow field F , we perform Euler integration to
extract point cloud flow estimates as part of reconstruction losses. Notably, EulerFlow only requires
a single optimization loop over a single neural prior θ compared to NSFP’s two priors θ and θ′. Our
neural prior θ is a straightforward extension to NSFP’s coordinate network prior. Like with NSFP,
TruncatedChamfer is defined as the standard L2 Chamfer distance with per-point distances below 2
meters. As we show in Section 5, EulerFlow’s simple ODE estimation formulation across multiple
observations produces high quality flow, and solving this ODE over arbitrary time spans unlocks
emergent point tracking behavior.

5 EXPERIMENTS

In order to validate EulerFlow’s construction and better understand the impact of its design choices,
we perform extensive experiments on the Argoverse 2 (Wilson et al., 2021) and Waymo Open (Sun
et al., 2020) autonomous vehicle datasets. We compare against open source implementations of
FastNSF (Li et al., 2023), Liu et al., NSFP (Li et al., 2021b), FastFlow3D (Jund et al., 2021), and
variants of ZeroFlow (Vedder et al., 2024) provided by the ZeroFlow model zoo3, a third-party
implementation of NTP (Wang et al., 2022a) from Vidanapathirana et al., and Argoverse 2 2024
Scene Flow Challenge leaderboard submission results from the authors of Flow4D (Kim et al.,
2024), TrackFlow (Khatri et al., 2024), DeFlow++/DeFlow (Zhang et al., 2024a), ICP Flow (Lin
& Caesar, 2024), and SeFlow (Zhang et al., 2024b). As discussed in Khatri et al. and used in
the Argoverse 2 2024 Scene Flow Challenge, methods are ranked by their speed normalized mean
Dynamic Normalized EPE.

Implementation Details. To showcase the flexibility of EulerFlow without hyperparameter tuning,
for all quantitative experiments we run with a neural prior of depth 8 (NSFP’s default depth), except
for our submission to the Argoverse 2 2024 Scene Flow Challenge (Section 5.1) where, based on
our depth ablation study on the val split (Section 5.2.3), we set the depth of the neural prior to 18.
As discussed in NTP’s original paper (Wang et al., 2022a) and confirmed by our experiments, NTP
struggles to converge beyond 25 frames, so we only compare against it in a 20 frame settings. As is

2Visualizations shown in color for better viewing. EulerFlow can also use monodepth estimates (Ap-
pendix A.2)

3https://github.com/kylevedder/SceneFlowZoo, from Vedder et al. (2024).

5

https://github.com/kylevedder/SceneFlowZoo


Preprint

typical in the scene flow literature (Chodosh et al., 2023), we perform ego compensation and ground
point removal on both Argoverse 2 and Waymo Open using the dataset provided map and ego pose.

5.1 HOW DOES EULERFLOW COMPARE TO PRIOR ART ON REAL DATA?

EulerFlow achieves state-of-the-art performance on the Argoverse 2 2024 Scene Flow Challenge
leaderboard. Despite being unsupervised, EulerFlow surpasses all prior art, supervised or un-
supervised, including Flow4D (Kim et al., 2024)4 and ICP Flow (Lin & Caesar, 2024)5. Notably,
EulerFlow achieves < 2.5× lower error mean Dynamic EPE than ICP Flow and beats Flow4D by
over 10%.

0.0 0.1 0.2 0.3 0.4 0.5 0.6

mean Dynamic Normalized EPE

ZeroFlow 1x

FastFlow3D

ZeroFlow 3x

ZeroFlow 5x

ZeroFlow XL 3x

ZeroFlow XL 5x

NSFP

Liu et al. 2024

FastNSF

DeFlow

SeFlow

ICP Flow

DeFlow++

TrackFlow

Flow4D
EulerFlow (Ours)

0.5941

0.5323

0.5057

0.4846

0.4421

0.4389

0.4219

0.4134

0.3826

0.3706

0.3470

0.3309

0.2769

0.2689

0.1453

0.1304

Figure 5: Mean Dynamic Normalized EPE of EulerFlow compared to prior art on the Argoverse 2
2024 Scene Flow Challenge test set. EulerFlow is state-of-the-art, beating all supervised (shown in
black) and unsupervised (shown in white) methods. Lower is better.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

mean Dynamic Normalized EPE

FastFlow3D

ZeroFlow 1x

NSFP

FastNSF

EulerFlow (Ours)

0.7570

0.7386

0.5725

0.4288

0.2187

Figure 6: Mean Dynamic Normalized EPE of EulerFlow compared to prior art on the Waymo Open
validation set. EulerFlow is state-of-the-art, beating all supervised (shown in black) and unsupervised
(shown in white) methods. Lower is better.

EulerFlow’s dominant performance also holds on Waymo Open (Sun et al., 2020); we compare
against several popular methods (Figure 6), and EulerFlow again out-performs the baselines by a
wide margin, more than halving the error over the next best method.

5.2 WHAT CONTRIBUTES TO EULERFLOW’S STATE-OF-THE-ART PERFORMANCE?

We find that EulerFlow’s lower mean Dynamic EPE can be attributed to better performance on
smaller objects. On Argoverse 2, compared to Flow4D, EulerFlow’s improves on WHEELED VRU
(Figure 7d), a small, rare, fast moving class. Compared to ICP Flow, EulerFlow’s improves on
all classes (at least halving the error on every class!), with the largest improvements coming from
the smaller and harder to detect objects PEDESTRAIN and WHEELED VRU (Figures 7c–7d). On
Waymo Open, the same story holds; the most dramatic performance improvements come from the
small object classes of CYCLIST and PEDESTRIAN (Figure 8).

These results are consistent with our qualitative visualizations. Figure 13 shows EulerFlow is able to
cleanly extract the motion of a bird flying past the ego vehicle. Euler integration using EulerFlow’s

4Flow4D is the winner of the 2024 Argoverse 2 Scene Flow Challenge supervised track.
5ICP Flow is the winner of the 2024 Argoverse 2 Scene Flow Challenge unsupervised track.

6



Preprint

0.0

0.2

0.4

0.6

0.8

1.0

D
y
n
am

ic
 N

or
m

al
iz

ed
 E

P
E

0.
09

29

0.
08

71

0.
18

17

0.
13

59

0.
19

45

0.
20

82

0.
15

38

0.
29

61

0.
30

95

0.
25

09

0.
23

82

0.
22

40

0.
22

12

0.
23

18

0.
24

29

0.
32

67

E
u
le

rF
lo

w
 (

O
u
rs

)

F
lo

w
4D

T
ra

ck
F
lo

w

D
eF

lo
w

+
+

IC
P

 F
lo

w

S
eF

lo
w

D
eF

lo
w F
as

tN
S
F

L
iu

 e
t 

al
. 
20

24

N
S
F
P

Z
er

oF
lo

w
 X

L
 5

x

Z
er

oF
lo

w
 X

L
 3

x

Z
er

oF
lo

w
 5

x

Z
er

oF
lo

w
 3

x

F
as

tF
lo

w
3D

Z
er

oF
lo

w
 1

x

(a) CAR

0.0

0.2

0.4

0.6

0.8

1.0

0.
14

08

0.
15

05

0.
30

54

0.
24

91

0.
33

14

0.
35

46

0.
31

69

0.
41

26

0.
55

86

0.
33

13

0.
25

77

0.
27

22

0.
29

84 0.
33

57

0.
39

08

0.
47

56

E
u
le

rF
lo

w
 (

O
u
rs

)

F
lo

w
4D T

ra
ck

F
lo

w

D
eF

lo
w

+
+

IC
P

 F
lo

w

S
eF

lo
w

D
eF

lo
w

F
as

tN
S
F

L
iu

 e
t 

al
. 
20

24

N
S
F
P

Z
er

oF
lo

w
 X

L
 5

x

Z
er

oF
lo

w
 X

L
 3

x

Z
er

oF
lo

w
 5

x

Z
er

oF
lo

w
 3

x

F
as

tF
lo

w
3D

Z
er

oF
lo

w
 1

x

(b) OTHER VEHICLES

0.0

0.2

0.4

0.6

0.8

1.0

D
y
n
am

ic
 N

or
m

al
iz

ed
 E

P
E

0.
19

47

0.
21

65

0.
35

81

0.
46

96

0.
43

53

0.
54

30

0.
66

22

0.
50

02

0.
50

92

0.
72

25

0.
80

79

0.
82

53

0.
93

84

0.
94

67 0.
98

18

0.
96

63

(c) PEDESTRIAN

0.0

0.2

0.4

0.6

0.8

1.0

0.
09

31 0.
12

72

0.
23

02

0.
25

31

0.
36

26

0.
28

21

0.
34

95

0.
32

15

0.
27

61

0.
38

31

0.
45

17

0.
44

71 0.
48

03 0.
50

86

0.
51

39

0.
60

78

(d) WHEELED VRU

Figure 7: Per class Dynamic Normalized EPE of EulerFlow compared to prior art on the Argoverse 2
2024 Scene Flow Challenge test set. Supervised methods shown in black, unsupervised methods
shown in white. Methods are ordered left to right by increasing mean Dynamic Normalized EPE.
Lower is better.

0.0

0.2

0.4

0.6

0.8

1.0

D
y
n
am

ic
 N

or
m

al
iz

ed
 E

P
E

0.0772

0.
20

37

0.
30

00 0.
34

94

0.
30

76

E
u
le

rF
lo

w
 (

O
u
rs

)

F
as

tN
S
F

N
S
F
P

Z
er

oF
lo

w
 1

x

F
as

tF
lo

w
3D

(a) VEHICLE

0.0

0.2

0.4

0.6

0.8

1.0

0.
13

38

0.
38

45

0.
58

36

0.
88

64

0.
96

65

(b) CYCLIST

0.0

0.2

0.4

0.6

0.8

1.0

0.
44

50

0.
69

82

0.
83

40

0.
98

01

0.
99

69

(c) PEDESTRIAN

Figure 8: Per class Dynamic Normalized EPE of EulerFlow compared to prior art on the Waymo
Open validation set. Supervised methods shown in black, unsupervised methods shown in white.
Methods are ordered left to right by increasing mean Dynamic Normalized EPE. Lower is better.

ODE, starting at the bird’s takeoff position and ending when it loses lidar returns, produces emergent
3D point tracking behavior on the bird through its trajectory (Figure 9), further demonstrating the
quality of EulerFlow’s model of the scene’s motion.

(a) Bird trajectory via Euler integration from takeoff (b) Bird being tracked

Figure 9: EulerFlow is able to track the bird over 20 frames by performing Euler integration starting
from takeoff until it loses all point cloud lidar returns.

7



Preprint

0.0 0.1 0.2 0.3 0.4

mean Dynamic Normalized EPE

NSFP (Len 2)

EulerFlow Len 5

NTP (Len 20)

EulerFlow Len 20

EulerFlow Len 50

EulerFlow Full

0.4600

0.4089

0.2805

0.2103

0.1948

0.1588

Figure 10: Mean Dynamic Normalized EPE of EulerFlow for various sequence lengths on the
Argoverse 2 val split, compared against representative baselines. These results demonstrate that Eu-
lerFlow improves with sequence length; however, at a sequence length of 20, our method significantly
outperforms NTP, suggesting that EulerFlow’s performance cannot solely be attributed to longer
sequence modeling.

5.2.1 HOW DOES OBSERVATION SEQUENCE LENGTH IMPACT EULERFLOW?

As we discuss in Section 3, EulerFlow benefits from constructive interference from ODE estimation
over many observations. Does this sufficiently explain EulerFlow’s performance? Figure 10 shows
the performance of EulerFlow at length 5, 20, 50, and full sequence (roughly 160 frames) compared
to NSFP and NTP at length 20. EulerFlow sees clear continual improvements as the number of frames
increases without signs of saturation. However, sequence length alone does not explain EulerFlow’s
performance; even at the same sequence length of 20, EulerFlow demonstrates significantly better
performance than NTP.

5.2.2 HOW DO MULTI-FRAME OPTIMIZATION OBJECTIVES IMPACT EULERFLOW?

0.0 0.1 0.2 0.3 0.4

mean Dynamic Normalized EPE

NSFP (Len 2)

NTP (Len 20)

EulerFlow No k> 1

EulerFlow No Cycle

EulerFlow Full

0.4600

0.2805

0.2609

0.1878

0.1588

Figure 11: Mean Dynamic Normalized EPE of EulerFlow for various losses on the Argoverse 2
val split, compared against representative baselines. These results demonstrate that EulerFlow’s
multi-observation optimization objectives significantly improve overall performance.

Equation 3 outlines two major components of EulerFlow’s loss: multi-frame Euler integration for
Chamfer Distance reconstruction, and cycle consistency. Figure 11 compares EulerFlow without
more than one integration step (No k > 1) and without cycle consistency rollouts (No Cycle) to better
understand the impact of these components. Ablating multi-step Euler integrated rollouts results in
significant degredation, as they are a strong forcing function to have consistent, smooth flow volumes;
indeed, despite consuming the entire sequence, EulerFlow (No k > 1) is only slightly better than
NTP with a sequence length of 20. These results highlight the power of multi-step rollouts and their
potential as a objective for other test-time optimization methods and feedforward methods.

5.2.3 HOW DOES THE CAPACITY OF THE NEURAL PRIOR IMPACT EULERFLOW?

Li et al. ablate the capacity of NSFP’s neural prior to characterize underfitting and overfitting to
optimization objective noise, ultimately selecting a depth of 8. EulerFlow’s neural prior is structured
similarly; however, NSFP is fitting a single snapshot in time, while EulerFlow is fitting an entire
ODE over significant time intervals. Intuitively, one would expect that full sequence modeling would
benefit from greater network capacity.

To evaluate this, we perform a sweep of EulerFlow’s network depth on the Argoverse 2 validation
split (Figure 12). While EulerFlow with NSFP’s default of depth 8 performs well on our Argoverse
2 evaluations (0.1% worse than the supervised state-of-the-art Flow4D), we see that performance
improves as the neural prior’s depth increases until depth 18 (indicating underfitting), where we start

8



Preprint

to see degradation (indicating overfitting to noise). Based on these results our Argoverse 2 2024
Scene Flow Challenge leaderboard submission uses a depth 18 neural prior (Figure 5).

0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200

mean Dynamic Normalized EPE

EulerFlow Depth 6

EulerFlow Depth 8

EulerFlow Depth 10

EulerFlow Depth 12

EulerFlow Depth 14

EulerFlow Depth 16

EulerFlow Depth 18

EulerFlow Depth 20

EulerFlow Depth 22

0.2113

0.1588

0.1550

0.1536

0.1532

0.1489

0.1435

0.1453

0.1472

Figure 12: Mean Dynamic Normalized EPE of EulerFlow on the Argoverse 2 val split for different
neural prior capacities. Shallow networks underfit the ODE, while deeper networks overfit to noise in
the optimization objectives.

(a) EulerFlow (Ours) (b) Fast NSF (c) ZeroFlow 5x

(d) Liu et al. (e) NSFP (f) Ground Truth

Figure 13: Visualization of EulerFlow compared to prior art for the same scene as Figure 1a and
Figure 9a. EulerFlow is able to extract the bird’s trajectory; however, all other methods except Liu
et al. fail to recognize this motion, and Liu et al.’s flow is marred by severe scene artifacts. The bird is
outside the labeled object taxonomy, and so its motion is unlabeled in the ground truth (Figure 13f).

5.3 BEYOND AUTONOMOUS VEHICLES

Due to a dearth of real-world, labeled scene flow data, prior scene flow work on real data overwhelm-
ingly evaluates on autonomous vehicle datasets (Dewan et al., 2016; Li et al., 2021b; Jund et al.,
2021; Li et al., 2023; Chodosh et al., 2023; Liu et al., 2024; Vedder et al., 2024; Khatri et al., 2024);
consequently, motion understanding in other important domains like tabletop manipulation has been
neglected. To showcase EulerFlow’s out-of-the-box flexibility and generalizability, we visualize Eu-
lerFlow on several dynamic tabletop scenes we collected using the ORBBEC Astra, a low cost depth
camera commonly used in robotics (Figure 14). For viewing ease, we paint our point clouds with
color; however, RGB information is not provided to EulerFlow during optimization. While EulerFlow
only reasons about point clouds, it can leverage video mono depth estimates to describe RGB-only
scene flow (Appendix A.2). Interactive visuals are available at vedder.io/eulerflow.

6 CONCLUSION

By reframing scene flow as fitting an ODE over positions for a full sequence of observations, we are
able to construct EulerFlow, a simple unsupervised scene flow method that achieves state-of-the-art
performance on the Argoverse 2 2024 Scene Flow Challenge and Waymo Scene Flow benchmark,

9

https://vedder.io/eulerflow


Preprint

Figure 14: Visualizations of EulerFlow’s emergent 3D point tracking behavior that demonstrate the
quality of its ODE estimate. Row 1 depicts tracking a tomato placed in the sink by a human hand;
note the point does not move despite the hand grasping the tomato. Row 2 depicts tracking of painters
tape rolling off a table; EulerFlow is able to estimate its trajectory even after it disappears out of
frame. Row 3 depicts tracking of the motion of a jack commonly used in tabletop manipulation
experiments (Venkatesh et al., 2023). Row 4 depicts tracking of a tennis ball taped to a flexible rod.
All tracks are produced by Euler integration through the estimated ODE from the initial conditions
shown in the left column. Note that point clouds are shown in color for visualization purposes only.

where it beats all prior art, supervised or unsupervised. EulerFlow is able to describe motion on small,
fast moving, out of distribution objects unable to be captured by prior art, suggesting that it makes
good on the promises of scene flow as a powerful primitive for understanding the dynamic world. It
also exhibits other emergent capabilities, like basic 3D point tracking behavior.

We believe that this ODE formulation has implications for scene flow at large, including beyond test-
time optimization methods; the power of multi-step Euler integration may translate to feedforward
network training. Future work should explore feedforward models that perform autoregressive
rollouts or directly learn to estimate multiple steps into the future.

6.1 LIMITATIONS AND FUTURE WORK

EulerFlow’s strong performance opens the book on an exciting new line of work; however, we feel
that it’s important to be candid about EulerFlow’s current limitations in order to make future progress.
EulerFlow is point cloud only. Point cloud sparsity bottlenecks performance; for instance, in Figure 9
and Figure 13 we were only able to track the bird for 20 frames because we lost lidar observations
of the bird, while it remained visible in the car’s RGB cameras. Future works should explore
multi-modal fusion for better long-term motion descriptions.
EulerFlow is expensive to optimize. With our implementation, optimizing EulerFlow for a single
Argoverse 2 sequence takes 24 hours on one NVIDIA V100 16GB GPU, putting it on par with the
original NeRF paper’s computation expense (Mildenhall et al., 2021). However, like with NeRF, we
believe algorithmic, optimization, and engineering improvements can significantly reduce runtime.
EulerFlow does not understand ray casting geometry. During ego-motion, a static foreground
occluding object casts a moving shadow on the background; this causes Chamfer Distance to estimate
this as a leading edge of moving structure, encouraging false motion artifacts (Li et al., 2021b). This
can be addressed with optimization losses that model point clouds as originating from a time of flight
sensor with limited visibility, as has been successfully demonstrated in the reconstruction (Chodosh
et al., 2024) and forecasting literature (Khurana et al., 2023; Agro et al., 2024), rather than an
unstructured set of points to be associated via local point distance.

10



Preprint

REFERENCES

Ben Agro, Quin Sykora, Sergio Casas, Thomas Gilles, and Raquel Urtasun. UnO: Unsupervised
Occupancy Fields for Perception and Forecasting. In CVPR, 2024.

Ramy Battrawy, René Schuster, Mohammad-Ali Nikouei Mahani, and Didier Stricker. RMS-FlowNet:
Efficient and Robust Multi-Scale Scene Flow Estimation for Large-Scale Point Clouds. In Int.
Conf. Rob. Aut., pp. 883–889. IEEE, 2022.

Aseem Behl, Despoina Paschalidou, Simon Donné, and Andreas Geiger. Pointflownet: Learning
representations for rigid motion estimation from point clouds. In Int. Conf. Comput. Vis., pp.
7962–7971, 2019.

D. J. Butler, J. Wulff, G. B. Stanley, and M. J. Black. A naturalistic open source movie for optical
flow evaluation. In A. Fitzgibbon et al. (Eds.) (ed.), European Conf. on Computer Vision (ECCV),
Part IV, LNCS 7577, pp. 611–625. Springer-Verlag, October 2012.

Ricky T. Q. Chen, Yulia Rubanova, Jesse Bettencourt, and David Duvenaud. Neural ordinary
differential equations. In Proceedings of the 32nd International Conference on Neural Information
Processing Systems, NeurIPS’18, pp. 6572–6583, Red Hook, NY, USA, 2018.

Shin-Fang Chng, Sameera Ramasinghe, Jamie Sherrah, and Simon Lucey. Gaussian Activated Neural
Radiance Fields for High Fidelity Reconstruction and Pose Estimation. In Computer Vision –
ECCV 2022: 17th European Conference, Tel Aviv, Israel, October 23–27, 2022, Proceedings, Part
XXXIII, pp. 264–280, Berlin, Heidelberg, 2022. Springer-Verlag. ISBN 978-3-031-19826-7.

Nathaniel Chodosh, Deva Ramanan, and Simon Lucey. Re-Evaluating LiDAR Scene Flow for
Autonomous Driving. arXiv preprint, 2023.

Nathaniel Chodosh, Anish Madan, Deva Ramanan, and Simon Lucey. Simultaneous Map and Object
Reconstruction, 2024. URL https://arxiv.org/abs/2406.13896.

Ayush Dewan, Tim Caselitz, Gian Diego Tipaldi, and Wolfram Burgard. Rigid scene flow for 3d lidar
scans. In Int. Conf. Intel. Rob. Sys., pp. 1765–1770. IEEE, 2016.

Emeç Erçelik, Ekim Yurtsever, Mingyu Liu, Zhijie Yang, Hanzhen Zhang, Pınar Topçam, Maximilian
Listl, Yılmaz Kaan Çaylı, and Alois Knoll. 3D Object Detection with a Self-supervised Lidar Scene
Flow Backbone. In Shai Avidan, Gabriel Brostow, Moustapha Cissé, Giovanni Maria Farinella,
and Tal Hassner (eds.), Computer Vision – ECCV 2022, pp. 247–265, Cham, 2022. Springer Nature
Switzerland.

Xiuye Gu, Yijie Wang, Chongruo Wu, Yong Jae Lee, and Panqu Wang. Hplflownet: Hierarchical
permutohedral lattice flownet for scene flow estimation on large-scale point clouds. In IEEE Conf.
Comput. Vis. Pattern Recog., pp. 3254–3263, 2019.

Ramin Hasani, Mathias Lechner, Alexander Amini, Daniela Rus, and Radu Grosu. Liquid Time-
constant Networks. Proceedings of the AAAI Conference on Artificial Intelligence, 35:7657–7666,
May 2021.

Wenbo Hu, Xiangjun Gao, Xiaoyu Li, Sijie Zhao, Xiaodong Cun, Yong Zhang, Long Quan, and Ying
Shan. DepthCrafter: Generating Consistent Long Depth Sequences for Open-world Videos. arXiv
preprint arXiv:2409.02095, 2024.

Philipp Jund, Chris Sweeney, Nichola Abdo, Zhifeng Chen, and Jonathon Shlens. Scalable Scene
Flow From Point Clouds in the Real World. IEEE Robotics and Automation Letters, 12 2021.

Ishan Khatri, Kyle Vedder, Neehar Peri, Deva Ramanan, and James Hays. I Can’t Believe It’s Not
Scene Flow! In European Conference on Computer Vision (ECCV), 2024.

Tarasha Khurana, Peiyun Hu, David Held, and Deva Ramanan. Point Cloud Forecasting as a Proxy for
4D Occupancy Forecasting. In IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), 2023.

11

https://arxiv.org/abs/2406.13896


Preprint

Jaeyeul Kim, Jungwan Woo, Ukcheol Shin, Jean Oh, and Sunghoon Im. Flow4D: Leveraging 4D
Voxel Network for LiDAR Scene Flow Estimation, 2024. URL https://arxiv.org/abs/
2407.07995.

Yair Kittenplon, Yonina C Eldar, and Dan Raviv. Flowstep3d: Model unrolling for self-supervised
scene flow estimation. In IEEE Conf. Comput. Vis. Pattern Recog., pp. 4114–4123, 2021.

Ruibo Li, Guosheng Lin, Tong He, Fayao Liu, and Chunhua Shen. HCRF-Flow: Scene flow from
point clouds with continuous high-order CRFs and position-aware flow embedding. In IEEE Conf.
Comput. Vis. Pattern Recog., pp. 364–373, 2021a.

Xueqian Li, Jhony Kaesemodel Pontes, and Simon Lucey. Neural Scene Flow Prior. Advances in
Neural Information Processing Systems, 34, 2021b.

Xueqian Li, Jianqiao Zheng, Francesco Ferroni, Jhony Kaesemodel Pontes, and Simon Lucey. Fast
Neural Scene Flow. In Proceedings of the IEEE/CVF International Conference on Computer
Vision (ICCV), pp. 9878–9890, October 2023.

Yancong Lin and Holger Caesar. ICP-Flow: LiDAR Scene Flow Estimation with ICP. 2024.

Dongrui Liu, Daqi Liu, Xueqian Li, Sihao Lin, Hongwei xie, Bing Wang, Xiaojun Chang, and Lei
Chu. Self-supervised multi-frame neural scene flow, 2024. URL https://arxiv.org/abs/
2403.16116.

Xingyu Liu, Charles R Qi, and Leonidas J Guibas. FlowNet3D: Learning Scene Flow in 3D Point
Clouds. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), 2019.

N. Mayer, E. Ilg, P. Häusser, P. Fischer, D. Cremers, A. Dosovitskiy, and T. Brox. A Large Dataset
to Train Convolutional Networks for Disparity, Optical Flow, and Scene Flow Estimation. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),
2016.

Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik, Jonathan T. Barron, Ravi Ramamoorthi, and
Ren Ng. NeRF: representing scenes as neural radiance fields for view synthesis. Commun. ACM,
65(1):99–106, dec 2021. ISSN 0001-0782.

Mahyar Najibi, Jingwei Ji, Yin Zhou, Charles R. Qi, Xinchen Yan, Scott Ettinger, and Dragomir
Anguelov. Motion Inspired Unsupervised Perception and Prediction in Autonomous Driving.
European Conference on Computer Vision (ECCV), 2022.

Chrisopher Nalty, Neehar Peri, Joshua Gleason, Carlos Castillo, Shuowen Hu, Thirimachos Bourlai,
and Rama Chellappa. A Brief Survey on Person Recognition at a Distance. 12 2022. doi:
10.48550/arXiv.2212.08969.

Richard A. Newcombe, Dieter Fox, and Steven M. Seitz. DynamicFusion: Reconstruction and
tracking of non-rigid scenes in real-time. In 2015 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pp. 343–352, 2015. doi: 10.1109/CVPR.2015.7298631.

Keunhong Park, Utkarsh Sinha, Jonathan T. Barron, Sofien Bouaziz, Dan B Goldman, Steven M.
Seitz, and Ricardo Martin-Brualla. Nerfies: Deformable Neural Radiance Fields. ICCV, 2021.

Neehar Peri, Achal Dave, Deva Ramanan, and Shu Kong. Towards Long Tailed 3D Detection. CoRL,
2022a.

Neehar Peri, Jonathon Luiten, Mengtian Li, Aljosa Osep, Laura Leal-Taixe, and Deva Ramanan.
Forecasting from LiDAR via Future Object Detection. arXiv:2203.16297, 2022b.

Neehar Peri, Mengtian Li, Benjamin Wilson, Yu-Xiong Wang, James Hays, and Deva Ramanan. An
empirical analysis of range for 3d object detection. arXiv preprint arXiv:2308.04054, 2023.

Gilles Puy, Alexandre Boulch, and Renaud Marlet. Flot: Scene flow on point clouds guided by
optimal transport. In Eur. Conf. Comput. Vis., pp. 527–544. Springer, 2020.

12

https://arxiv.org/abs/2407.07995
https://arxiv.org/abs/2407.07995
https://arxiv.org/abs/2403.16116
https://arxiv.org/abs/2403.16116


Preprint

Sameera Ramasinghe, Hemanth Saratchandran, Violetta Shevchenko, Alexander Long, and Simon
Lucey. On the Optimality of Activations in Implicit Neural Representations, 2024. URL https:
//openreview.net/forum?id=0Lqyut1y7M.

Pei Sun, Henrik Kretzschmar, Xerxes Dotiwalla, Aurelien Chouard, Vijaysai Patnaik, Paul Tsui,
James Guo, Yin Zhou, Yuning Chai, Benjamin Caine, Vijay Vasudevan, Wei Han, Jiquan Ngiam,
Hang Zhao, Aleksei Timofeev, Scott Ettinger, Maxim Krivokon, Amy Gao, Aditya Joshi, Yu Zhang,
Jonathon Shlens, Zhifeng Chen, and Dragomir Anguelov. Scalability in Perception for Autonomous
Driving: Waymo Open Dataset. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), June 2020.

Ivan Tishchenko, Sandro Lombardi, Martin R Oswald, and Marc Pollefeys. Self-supervised learning
of non-rigid residual flow and ego-motion. In Int. Conf. 3D Vis., pp. 150–159. IEEE, 2020.

Kyle Vedder and Eric Eaton. Sparse PointPillars: Maintaining and Exploiting Input Sparsity to
Improve Runtime on Embedded Systems. In Proceedings of the International Conference on
Intelligent Robots and Systems (IROS), 2022.

Kyle Vedder, Neehar Peri, Nathaniel Chodosh, Ishan Khatri, Eric Eaton, Dinesh Jayaraman, Yang
Liu, Deva Ramanan, and James Hays. ZeroFlow: Scalable Scene Flow via Distillation. In Twelfth
International Conference on Learning Representations (ICLR), 2024.

Sharanya Venkatesh, Bibit Bianchini, Alp Aydinoglu, and Michael Posa. Sampling-Based Model
Predictive Control for Contact-Rich Manipulation. In IROS 2023 Workshop on Leveraging Models
for Contact-Rich Manipulation, 2023.

Kavisha Vidanapathirana, Shin-Fang Chng, Xueqian Li, and Simon Lucey. Multi-body neural scene
flow. In 2024 International Conference on 3D Vision (3DV). IEEE, 2024.

Chaoyang Wang, Xueqian Li, Jhony Kaesemodel Pontes, and Simon Lucey. Neural Prior for
Trajectory Estimation. In CVPR, pp. 6522–6532, 2022a. doi: 10.1109/CVPR52688.2022.00642.

Jun Wang, Xiaolong Li, Alan Sullivan, Lynn Abbott, and Siheng Chen. PointMotionNet: Point-Wise
Motion Learning for Large-Scale LiDAR Point Clouds Sequences. In 2022 IEEE/CVF Conference
on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 4418–4427, 2022b.

Thomas Weng, Sujay Man Bajracharya, Yufei Wang, Khush Agrawal, and David Held. Fabricflownet:
Bimanual cloth manipulation with a flow-based policy. In Conference on Robot Learning, pp.
192–202. PMLR, 2022.

Benjamin Wilson, William Qi, Tanmay Agarwal, John Lambert, Jagjeet Singh, Siddhesh Khandelwal,
Bowen Pan, Ratnesh Kumar, Andrew Hartnett, Jhony Kaesemodel Pontes, Deva Ramanan, Peter
Carr, and James Hays. Argoverse 2: Next Generation Datasets for Self-driving Perception and
Forecasting. In Proceedings of the Neural Information Processing Systems Track on Datasets and
Benchmarks (NeurIPS Datasets and Benchmarks 2021), 2021.

Wenxuan Wu, Zhi Yuan Wang, Zhuwen Li, Wei Liu, and Li Fuxin. Pointpwc-net: Cost volume on
point clouds for (self-) supervised scene flow estimation. In Eur. Conf. Comput. Vis., pp. 88–107.
Springer, 2020.

Guangyao Zhai, Xin Kong, Jinhao Cui, Yong Liu, and Zhen Yang. FlowMOT: 3D Multi-Object
Tracking by Scene Flow Association. ArXiv, abs/2012.07541, 2020.

Qingwen Zhang, Yi Yang, Heng Fang, Ruoyu Geng, and Patric Jensfelt. DeFlow: Decoder of Scene
Flow Network in Autonomous Driving. ICRA, 2024a.

Qingwen Zhang, Yi Yang, Peizheng Li, Olov Andersson, and Patric Jensfelt. Seflow: A self-
supervised scene flow method in autonomous driving. arXiv preprint arXiv:2407.01702, 2024b.

Benjin Zhu, Zhengkai Jiang, Xiangxin Zhou, Zeming Li, and Gang Yu. Class-balanced Grouping
and Sampling for Point Cloud 3D Object Detection. arXiv preprint arXiv:1908.09492, 2019.

13

https://openreview.net/forum?id=0Lqyut1y7M
https://openreview.net/forum?id=0Lqyut1y7M


Preprint

A ADDITIONAL RESULTS

A.1 HOW DOES THE CHOICE OF LEARNABLE FUNCTION CLASS AND DESIGN OF ENCODINGS
IMPACT EULERFLOW?

EulerFlow at its core is an optimization loop over a simple, feedforward ReLU-based multi-layer
perception inherited from Neural Scene Flow Prior (Li et al., 2021b). How does this choice of
learnable function class impact the performance of EulerFlow? To better understand these design
choices we examine the choice of non-linearity and time feature encoding.

0.0 0.5 1.0 1.5 2.0 2.5

mean Dynamic Normalized EPE

EulerFlow

EulerFlow Fourier Time

EulerFlow SinC

EulerFlow Gaussian

0.1588

0.1676

0.1745

2.5192

Figure 15: Mean Dynamic Normalized EPE of EulerFlow on the Argoverse 2 val split for less-smooth
configurations of its learnable function class. These results indicate that the smoothness of the ReLU
non-linearity proposed by Li et al. transfers well to EulerFlow.

One of Li et al.’s core theoretical contributions demonstrates that NSFP’s ReLU MLP is a good prior
for scene flow because it represents a smooth learnable function class, and scene flow is often locally
smooth with respect to input position. However, unlike NSFP, EulerFlow is fitting flow over a full
ODE; while it seems reasonable to assume that this ODE is typically also locally smooth, cases like
adjacent cars moving rapidly in opposite directions may benefit from the ability to model higher
frequency, less locally smooth functions. To test this hypothesis, we ablate EulerFlow by replacing its
normalized time with higher frequency sinusoidal time embeddings (mirroring Wang et al.’s proposed
time embedding for NTP), as well as try other popular non-linearities like SinC (Ramasinghe et al.,
2024) and Gaussian (Chng et al., 2022) from the coordinate network literature. Figure 15 features
negative results on these ablations across the board; Gaussians were unable to converge due the
extremely high frequency representation triggering early stopping, while the use of SinC and higher
frequency time embeddings both resulted in worse overall performance, indicating that Li et al.’s
smooth function prior does indeed seem appropriate for EulerFlow’s neural prior.

A.2 EULERFLOW WITH MONOCULAR DEPTH ESTIMATES

While EulerFlow only consumes point clouds, we can leverage RGB-based video monocular depth
estimators to fit scene flow. In Figure 16, we use DepthCrafter (Hu et al., 2024) to generate a point
cloud from the raw RGB of the tabletop video from Figure 14, Row 4.

Figure 16: Visualizations of EulerFlow’s emergent 3D point tracking behavior on monocular
depth estimates from DepthCrafter (Hu et al., 2024). Interactive visualizations available at
vedder.io/eulerflow.

A.3 HOW DOES EULERFLOW FAIL?

As we discuss in Section 6.1, EulerFlow does not understand projective geometry — its optimization
losses use Chamfer Distance which directly associates points, sometimes resulting in moving shadows

14

https://vedder.io/eulerflow


Preprint

Figure 17: Visualizations of one of the failure modes of EulerFlow where flow is predicted on
the edges of the moving "shadow" in the point cloud. Interactive visualizations available at
vedder.io/eulerflow.

on background objects. To demonstrate this, we select a particularly egregious example in Figure 17,
featuring a frame from the jack being thrown across the table. Due to the moving shadow cast
by the jack onto the table, EulerFlow incorrectly assigns flow to the table surface nearby the jack,
particularly on the leading edge, even though the table surface is stationary.

B FAQ

B.1 WHAT DATASETS DID YOU PRETRAIN ON?

EulerFlow is not pretrained on any datasets. It is a test-time optimization method (akin to NeRFs),
and as we show with our tabletop data, this means it runs out-of-the-box on arbitrary point cloud data.

B.2 WHY DIDN’T YOU USE A NEURAL ODE OR A LIQUID NEURAL NETWORK?

Neural ODEs (Chen et al., 2018) take variable size and number of steps in latent space to do inference;
imagine a ResNet that can use an ODE solver to dynamically scale the impact of the residual block,
as well as decide the number of residual blocks. They are not a function class specially designed to
fit derivative estimates well. Similar to Neural ODEs, Liquid Neural Networks (Hasani et al., 2021)
focus on the same class of problems and are similarly not applicable.

B.3 WHY DIDN’T YOU DO EXPERIMENTS ON FLYINGTHINGS3D / <SIMULATED DATASET>?

Most popular synthetic datasets do not contain long observation sequences (Mayer et al., 2016; Butler
et al., 2012), but instead include standalone frame pairs. Our method leverages the long sequence
of observations to refine our neural estimate of the true ODE. Indeed, on two frames, EulerFlow
collapses to NSFP.

More importantly, these datasets are also not representative of real world environments. To quote
Chodosh et al.: “[FlyingThings3D has] unrealistic rates of dynamic motion, unrealistic correspon-
dences, and unrealistic sampling patterns. As a result, progress on these benchmarks is misleading
and may cause researchers to focus on the wrong problems.” Khatri et al. also make this point by
highlighting the importance of meaningfully breaking down the object distribution during evaluation
identify performance on rare safety-critical categories. FlyingThings3D does not have meaningful
semantics; it’s not obvious what things even matter or how to appropriately break down the scene.

Instead, we want to turn our attention to the sort of workloads that do clearly matter — describing
motion in domains like manipulation or autonomous vehicles, where it seems clear that scene flow,
if solved, will serve as powerful primitive for downstream systems. This is why we performed
qualitative experiments on the tabletop data we collected ourselves; to our knowledge, no real-world
dynamic datasets of this nature exist with ground truth annotations, but we want to emphasize that
EulerFlow works in such domains, and consequently EulerFlow and other Scene Flow via ODE-based
methods can be used as a primitive in these real world domains.

15

https://vedder.io/eulerflow


Preprint

C EULERFLOW IMPLEMENTATION DETAILS

Our neural prior θ is a straightforward extension to NSFP’s coordinate network prior6; however,
instead of taking a 3D space vector (positions X,Y, Z ∈ R) as input, we encode a 5D space-time-
direction vector: positions X,Y, Z,∈ R, sequence normalized time t ∈ [−1, 1] (i.e. the point cloud
time scaled to this range), and direction d ∈ {BWD = −1,FWD = 1}. This simple encoding scheme
enables description of arbitrary regions of the ODE, allowing for the ODE to be queried at frequencies
different from the sensor frame rate. Euler integration enables simple implementation of multi-step
forward, backward, and cyclic consistency losses without extra bells and whistles. For efficiency,
we use Euler integration with ∆t set as the time between observations for our ODE solver, enabling
support for arbitrary sensor frame rates, and set the cycle consistency balancing term α = 0.01 and
optimization window W = 3 for all experiments.

D EULERFLOW’S ODE DERIVATION

D.1 FORMULATING THE ODE

Given a (possibly moving) particle in some canonical frame (i.e. time 0), we define a function
L(x0, y0, z0, t) that can describe its location at an arbitrary future time t, i.e. a Lagrangian description
of motion (Figure 4).

L(x0, y0, z0, t) = xt, yt, zt (4)

For notational clarity to access xt, yt, zt individually, we can define

Lx(x0, y0, z0, t) = xt (5)
Ly(x0, y0, z0, t) = yt (6)
Lz(x0, y0, z0, t) = zt (7)

Similarly, we can define F (xt, yt, zt, t) to describe the instantaneous velocity of a point xt, yt, zt at
some arbitrary time t, i.e. a Eulerian description of motion (Figure 4).

dL(x0, y0, z0, t)

dt
=

dL

dt
=

(
dLx

dt
,
dLy

dt
,
dLz

dt

)
= F (xt, yt, zt, t) (8)

F is defined in terms of the total derivative of L with respect to t, as x0, y0, z0 are initial conditions that
do not vary with time (i.e. dL

dt = ∂L
∂t +

∂L
∂x0

dx0

dt + ∂L
∂y0

dy0

dt + ∂L
∂z0

dz0
dt = ∂L

∂t , as dx0

dt = dy0

dt = dz0
dt = 0).

We can exactly define L recursively in terms of the initial conditions and F , i.e.

L(x0, y0, z0, t) = (x0, y0, z0) +

∫ t

0

F (Lx(x0, y0, z0, τ), Ly(x0, y0, z0, τ), Lz(x0, y0, z0, τ), τ)dτ

(9)

or, more compactly,

L(x0, y0, z0, t) = (x0, y0, z0) +

∫ t

0

F (xτ , yτ , zτ , τ)dτ (10)

Our function L can thus be defined as a multi-dimensional ODE in terms of F with initial conditions
x0, y0, z0.

6Hyperparameters (e.g. filter width of 128) of NSFP’s prior are kept fixed, except for depth (Section 5.2.3).

16



Preprint

D.2 ARBITRARY START AND END TIMES FROM THE EULERIAN FORMULATION

In the above derivation, L requires that a moving point be defined in terms of a canonical frame
defined at time 0, as is common in the deformation in reconstruction literature. However, the Eulerian
formulation has no such requirement, allowing us to select arbitrary start and end times across
different point queries. To showcase this, we can query F to extract the trajectory of a particle at t
across the range [t, t′] starting at xt, yt, zt simply by changing the range of the integral in Equation 10,
i.e.

E(xt, yt, zt, t, t
′) = (xt, yt, zt) +

∫ t′

t

F (xτ , yτ , zτ , τ)dτ (11)

While E and L appear similar on their face, E is strictly more flexible than L. In principle you could
choose to redefine L to use t as the time for your canonical frame, but this is a global choice; you
cannot do this on a per-query basis. However, with E’s Eulerian framing, we can extract a different
point’s trajectory from the entirely different range t† to t‡ (i.e. E(xt† , yt† , zt† , t

†, t‡)) without concern
for a canonical frame definition. It need not even be the case that t < t′; indeed, this extraction works
even if t > t′, i.e. extracting the backwards trajectory through time.

D.3 EULER INTEGRATION TO APPROXIMATELY SOLVE THE ODE

If F is of arbitrary form and we want to compute the concrete values of L, we cannot exactly compute
the continuous integral from 0 to t; we must approximate this with finite differences. Thus, we split
the time range 0 to t into k steps, where each step is of size t

k . Thus, we can again define L via
recursion, but this time explicitly.

L(x0, y0, z0, 0) = (x0, y0, z0) (12)

L(x0, y0, z0, τ +
t

k
) ≈ L(x0, y0, z0, τ) +

t

k
· F (xτ , yτ , zτ , τ), (13)

or directly without recursion,

L(x0, y0, z0, t) ≈ (x0, y0, z0) +

k∑
n=1

t

k
· F (xn t

k
, yn t

k
, zn t

k
, n

t

k
) (14)

This finite difference solving approach is Euler integration.

D.4 ESTIMATING THE FLOW FIELD WITH EULERFLOW’S NEURAL PRIOR

For a given scene, we do not have access to L or F directly; these are are the true functions that
uniquely characterize the underlying motion of the scene that we are trying to estimate. For EulerFlow,
we represent our estimate of the scene’s flow field F with a neural prior, θ, i.e.

F (x, y, z, t) ≈ θ(x, y, z, t) (15)

and thus

L(x0, y0, z0, t) ≈ (x0, y0, z0) +

k∑
n=1

t

k
· θ(xn t

k
, yn t

k
, zn t

k
, n

t

k
) (16)

and, using the arbitrary start and end definition from Appendix D.2, with k steps from the range t to
t′ and δ = t′−t

k

17



Preprint

E(xt, yt, zt, t, t
′) ≈ Eθ(xt, yt, zt, t, t

′) = (xt, yt, zt)+

k∑
n=1

δ · θ(xnδ+t, ynδ+t, znδ+t, nδ+ t) (17)

This formulation makes EulerFlow highly flexible, enabling optimization of θ’s estimate of F with
objectives that take either an Eulerian view (directly on θ via Equation 15) or a Lagrangian view (on
point rollouts for arbitrary start and end ranges via Equation 17).

18


	Introduction
	Background and Related Work
	Scene Flow via ODE
	EulerFlow
	Experiments
	How does EulerFlow compare to prior art on real data?
	What contributes to EulerFlow's state-of-the-art performance?
	How does observation sequence length impact EulerFlow?
	How do multi-frame optimization objectives impact EulerFlow?
	How does the capacity of the neural prior impact EulerFlow?

	Beyond Autonomous Vehicles

	Conclusion
	Limitations and Future Work

	Additional results
	How does the choice of learnable function class and design of encodings impact EulerFlow?
	EulerFlow with Monocular Depth Estimates
	How Does EulerFlow Fail?

	FAQ
	What datasets did you pretrain on?
	Why didn't you use a Neural ODE or a Liquid Neural Network?
	Why didn't you do experiments on FlyingThings3D / <simulated dataset>?

	EulerFlow implementation details
	EulerFlow's ODE Derivation
	Formulating the ODE
	Arbitrary start and end times from the Eulerian formulation
	Euler Integration to approximately solve the ODE
	Estimating the flow field with EulerFlow's neural prior


