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Long-Tailed 3D Detection via
Multi-Modal Late-Fusion
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Abstract—Contemporary autonomous vehicle (AV) benchmarks have advanced techniques for training 3D detectors, particularly on
large-scale multi-modal (LiDAR + RGB) data. Surprisingly, although semantic class labels naturally follow a long-tailed distribution,
existing benchmarks only focus on a few common classes (e.g., pedestrian and car) and neglect many rare but crucial classes
(e.g., emergency vehicle and stroller). However, AVs must reliably detect both common and rare classes for safe operation in
the open world. We address this challenge by formally studying the problem of Long-Tailed 3D Detection (LT3D), which evaluates all
annotated classes, including those in-the-tail. We address LT3D with hierarchical losses that promote feature sharing across classes,
and introduce diagnostic metrics that award partial credit to “reasonable” mistakes with respect to the semantic hierarchy (e.g.,
mistaking a child for an adult). Further, we point out that rare-class accuracy is particularly improved via multi-modal late fusion
(MMLF) of independently trained uni-modal LiDAR and RGB detectors. Importantly, such an MMLF framework allows us to leverage
large-scale uni-modal datasets (with more examples for rare classes) to train better uni-modal detectors, unlike prevailing end-to-end
trained multi-modal detectors that require paired multi-modal data. Finally, we examine three critical components of our simple MMLF
approach from first principles and investigate whether to train 2D or 3D RGB detectors for fusion, whether to match RGB and LiDAR
detections in 3D or the projected 2D image plane, and how to fuse matched detections. Extensive experiments reveal that 2D RGB
detectors achieve better recognition accuracy for rare classes than 3D RGB detectors and matching on the 2D image plane mitigates
depth estimation errors for better matching. Our proposed MMLF significantly improves LT3D performance over prior work, particularly
improving rare class performance from 12.8 to 20.0 mAP! Our code and models are available on our project page.

Index Terms—Long-Tailed Distribution, 3D Detection, Multi-Modal Late-Fusion, Autonomous Vehicles, Open World, LiDAR, RGB.
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1 INTRODUCTION

T Hree-dimensional (3D) object detection is a key component
in many robotics systems such as autonomous vehicles (AVs).

To facilitate research in this space, the AV industry has released
many large-scale 3D annotated multi-modal datasets [2], [3], [4],
[5], [6]. However, these datasets often benchmark on only a few
common classes (e.g., car and pedestrian) and ignore rare
classes (although annotated by some datasets) like stroller
and emergency vehicle (Fig. 1). In the real open world,
safe navigation [7], [8] requires AVs to reliably detect rare-
class objects such as debris and stroller. This motivates
the study of Long-Tailed 3D Detection (LT3D), a problem that
requires detecting objects from both common and rare classes.

Status Quo. Among contemporary AV datasets, nuScenes [6]
exhaustively annotates objects of various classes crucial to AVs
(Fig. 1) and organizes them into a semantic hierarchy (Fig. 4).
We are motivated to study LT3D by re-purposing all annotated
classes in nuScenes because detecting rare classes is useful for
downstream tasks such as motion planning. Importantly, LT3D
is not simply solved by retraining state-of-the-art methods on
both common and rare classes [9]. For example, CMT [10], a
multi-modal transformer-based detector, achieves only 4.8 mAP
on rare categories despite achieving 79.9 mAP on common
classes (Table 1).

Protocol. LT3D requires 3D localization and recognition of
objects from each of the common (e.g., adult and car) and
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rare classes (e.g, child and stroller). Moreover, for safety-
critical robots such as AVs, detecting but mis-classifying rare
objects (e.g., mis-classifying a child as an adult) is preferable
to failing to detect them at all for safe operation. Therefore, we
propose a new diagnostic metric to quantify the severity of classifi-
cation mistakes in LT3D that exploits inter-class relationships w.r.t
to the semantic hierarchy when awarding partial credit (Fig. 4).
We use both the standard and proposed metrics to evaluate 3D
detectors on all classes. Further, since prior work focuses on only
a few common classes, they miss opportunities to exploit this
semantic hierarchy during training. We propose hierarchical losses
to promote feature sharing across both common and rare classes

Technical Insights. To address LT3D, we start by retraining
state-of-the-art 3D detectors on all classes. Somewhat surpris-
ingly, prior work performs rather poorly on rare classes, e.g.,
CenterPoint [12] achieves only 0.1 AP on child and 0.1 AP on
stroller (Table 5). We propose several algorithmic innovations
to improve these results. First, we allow feature sharing across
common and rare classes by training a single feature trunk,
adding in hierarchical losses that ensure features will be useful for
all classes (Table 4). Second, noting that LiDAR data is simply
too impoverished for even humans to recognize certain tail objects
that tend to be small (e.g., strollers), we propose a Multi-
Modal Late-Fusion (MMLF) framework (Fig. 2) that fuses detec-
tions from a LiDAR-only detector (for precise 3D localization)
and an RGB-only detector (for better recognition). We introduce
Multi-Modal Filtering (MMF), a simple late-fusion approach that
post-processes uni-modal 3D predictions from 3D LiDAR-only
(e.g., CenterPoint [12]) and 3D RGB-only (e.g., FCOS3D [13])
detectors, filtering away detections that are inconsistent across
modalities. This significantly improves LT3D performance by 3.2

https://mayechi.github.io/lt3d-lf-io/
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Fig. 1: According to the histogram of per-class object counts (on the left), the nuScenes benchmark focuses on the common classes in cyan (e.g.,
car and barrier) but ignores rare ones in red (e.g., stroller and debris). In fact, the benchmark creates a superclass pedestrian
by grouping multiple classes in green, including the common class adult and several rare classes (e.g., child and police-officer); this
complicates the analysis of detection performance as pedestrian performance is dominated by adult. Moreover, the ignored superclass
pushable-pullable also contains diverse objects such as shopping-cart, dolly, luggage and trash-can as shown in the top
row (on the right). We argue that AVs should also detect rare classes as they can affect AV behaviors. Following [1], we report performance
for three groups of classes based on their cardinality (split by dotted lines): Many, Medium, and Few.

Late-fusion requires matching and fusing uni-modal detections.

RGB Detector LiDAR Detector
Fig. 2: We extensively explore the simple multi-modal late-fusion
(MMLF) framework for LT3D by ensembling RGB and LiDAR uni-
modal detectors [9]. We rigorously examine three critical components
within this framework (Fig. 3) and propose a simple method that fuses
detections produced by a 2D RGB-detector (e.g., DINO [11]) and a 3D
LiDAR-detector (e.g., CenterPoint [12]). Our method achieves 51.4
mAP on the nuScenes [6] LT3D benchmark, significantly improving
over state-of-the-art detectors by 5.9% (Table 1).

mAP on average (Table 2). Next, we delve into this MMLF
framework and study three critical design choices (Fig. 3): (A)
whether to train a 2D or a 3D monocular RGB detector for
late-fusion, (B) whether to match detections in the 2D image
plane or in 3D, and (C) how to optimally fuse detections. Our
exploration reveals that using 2D RGB detectors, matching on
the 2D image plane, and combining score-calibrated predictions
with Bayesian fusion yields state-of-the-art LT3D performance,
significantly outperforming end-to-end trained multi-modal 3D
detectors (Table 1).

Contributions. We present three major contributions. First,
we formulate the problem of LT3D, emphasizing the detection
of both common and rare classes in safety-critical applications
like AVs. Second, we design LT3D’s benchmarking protocol and
develop a diagnostic metric that awards partial credit depending on
the severity of misclassifications (e.g., misclassifying child-vs-
adult is less problematic than misclassifying child-vs-car).

Third, we propose several architecture-agnostic approaches to ad-
dress LT3D, including a simple multi-modal late-fusion (MMLF)
strategy that generalizes across different RGB and LiDAR archi-
tectures. We conduct extensive experiments to ablate our design
choices and demonstrate that our simple MMLF approach achieves
state-of-the-art results on the nuScenes and Argoverse 2 LT3D
benchmarks.

2 RELATED WORK

3D Object Detection for AVs. Contemporary approaches to 3D
object detection can be broadly classified as LiDAR-only, RGB-
only, and sensor-fusion methods. Recent work in 3D detection
is heavily inspired by prior work in 2D detection [14], [15],
[16]. LiDAR-based detectors like PointPillars [17], CBGS [18],
and PVRCNN++ [19] adopt an SSD-like architecture [15] that
regresses amodal bounding boxes from a bird’s-eye-view (BEV)
feature map. More recently, CenterPoint [12] adopts a center-
regression loss that is inspired by CenterNet [14]. Despite signif-
icant progress, LiDAR-based detectors often produce many false
positives because it is difficult to distinguish foreground objects
from the background given sparse LiDAR returns. Monocular
RGB-based methods have gained popularity in recent years due
to increased interest in camera-only perception. FCOS3D [13]
extends FCOS [20] by additionally regressing the size, depth, and
rotation for each object. More recently, methods such as BEVDet
and BEVFormer [21], [22], [23] construct a BEV feature-map
by estimating the per-pixel depth of each image feature [24].
PolarFormer [25] introduces a polar-coordinate transformation
that improves near-field detection. Importantly, many of these
state-of-the-art 3D RGB detectors are commonly pre-trained on
large external datasets like DDAD [26]. Monocular RGB detec-
tors accurately classify objects but struggle to estimate depth,
particularly for far-field detections [27]. Despite recent advances
in LiDAR and RGB 3D detectors, we find that multi-modal fusion
is essential for LT3D (detailed next). Importantly, using both RGB
(for better recognition) and LiDAR (for better 3D localization)
helps detect rare classes. We study the multi-modal late-fusion
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Fig. 3: We examine three key components in the multi-modal late-fusion (MMLF) of uni-modal RGB and LiDAR detectors from first
principles: A. whether to train 2D or 3D RGB detectors, B. whether to match uni-modal detections on the 2D image plane or in the 3D
bird’s-eye-view (BEV), and C. how to best fuse matched detections. Our exploration reveals that using 2D RGB detectors, matching on the 2D
image plane, and combining calibrated scores with Bayesian fusion yields state-of-the-art LT3D performance (Table 3 and Table 4).

framework described in Fig. 2 to determine how to effectively
fuse RGB and LiDAR uni-modal detectors for LT3D.

Multi-modal 3D Detection. Conventional wisdom suggests
that fusing multi-modal cues, particularly using LiDAR and RGB,
can improve 3D detection. Intuitively, LiDAR faithfully measures
the 3D world (although it has notoriously sparse point returns),
and RGB has high-resolution that captures semantic features for
recognition (but lacks 3D information). Multi-modal fusion for
3D detection is an active field of exploration. Popular approaches
can be categorized as input-fusion, feature-fusion, and late-fusion.
Input-fusion methods typically augment LiDAR points using
image-level features. For example, PointPainting [28] projects
LiDAR points onto the output mask of a semantic segmentation
model and appends corresponding class scores to each point.
MVP [29] densifies regions of LiDAR sweeps that correspond
with objects in semantic segmentation masks. In contrast, Frustum
PointNets [30] leverage 2D RGB detections to localize objects
within the box frustum using PointNets [31].

Recent works show that feature-fusion can be more effective
than input-fusion. PointFusion [32] fuses global image and point-
cloud features prior to detection and MSMDFusion [33] fuses
LiDAR and RGB features at multiple scales. TransFusion [34]
and BEVFusion [35] fuse features in the BEV space using multi-
headed attention. Despite the success of transformers for detecting
common objects, [9] finds that TransFusion struggles to detect rare
classes, and posits that the transformer architecture, as adopted in
TransFusion and BEVFusion, suffers from limited training data
(particularly for classes in the long tail). For transformers to work
well in practice, they should be trained on diverse, large-scale
datasets [36], [37]. It is also worth noting that end-to-end trained
multi-modal detectors require paired multi-modal data for training,
increasing the cost of data collection and modality alignment. In
this work, we opt to study a multi-modal late-fusion strategy,
a framework that ensembles uni-modal detectors, which do not
require aligned RGB-LiDAR paired training data. CLOCs [38] is a
late-fusion method that learns a separate network to fuse RGB and
LiDAR detections, showing promising results for 3D detection.
Importantly, prior late-fusion methods like CLOCS [38] only per-
form late-fusion on matched predictions with semantic agreement
and do not fix misclassifications. We find that handling such
misclassifications is critical for improving rare class performance.
We delve into this simple multi-modal late-fusion framework,
study three crucial design choices, and present a method that
significantly outperforms the state-of-the-art for LT3D.

Long-Tailed Perception. AV datasets follow a long-tailed
class distribution: a few classes like car and pedestrian are
dominant, while others like stroller and debris are rarely
seen. However, this problem is not unique to the AV domain [39]
– Long-Tailed Perception (LTP) is a long-standing problem in
the literature [1] and has been widely studied through the lens

of image classification, aiming for high accuracy averaged across
imbalanced classes [1], [40], [41]. Existing LTP methods propose
reweighting losses [42], [43], [44], [45], [46], [47], rebalancing
data sampling [48], [49], [50], balancing gradients computed from
imbalanced classes [51], and balancing network weights [41].
Others study LTP through the lens of 2D object detection with
RGB images [52]. Compared to 2D image-based recognition,
long-tailed 3D detection has unique opportunities and challenges
because sensors such as LiDAR directly provide geometric and
ego-motion cues that are difficult to extract from 2D images.
Further, 2D detectors must detect objects of different scales due
to perspective image projection, dramatically increasing the com-
plexity of the output space (e.g., requiring more anchor boxes).
In contrast, 3D objects do not exhibit as much scale variation,
but far-away objects tend to have sparse LiDAR returns [27],
[53], imposing different challenges. Finally, 3D detectors often
use class-aware heads (i.e. each class has its own binary classifier)
while 2D long-tail recognition approaches typically use shared
softmax heads.

Recently, CBGS [18] explicitly addresses rare-class 3D detec-
tion by up-sampling LiDAR-sweeps with instances of rare classes,
and pasting instances of rare objects copied from different scenes.
Although this works well for improving detection of infrequently-
seen classes (e.g. classes with medium number of examples like
bicycle and construction vehicle), it does not provide
significant improvement for classes with only a few examples
like debris and stroller [9]. Additionally, rare classes, such
as child and stroller, are typically small in size and have
a limited number of LiDAR returns. As a result, LiDAR-only
detectors struggle to accurately recognize these rare classes. In
this work, we address LT3D by multi-modal late-fusion, which
ensembles RGB and LiDAR uni-modal detectors.

3 LT3D BENCHMARKING PROTOCOL

Conceptually, LT3D extends the traditional 3D detection problem,
which focuses on identifying objects from K common classes,
by further requiring detection of N rare classes. As LT3D em-
phasizes detection performance on all classes, we report metrics
for three groups of classes based on their cardinality (Fig. 1-left):
many (>50k instance/class), medium (5k∼50k instance/class), and
few (<5k instance/class). To better analyze LT3D performance, we
present two metrics below.

Mean average precision (mAP) is a well-established metric
for object detection [2], [54], [55]. For 3D detection on LiDAR
sweeps, a true positive is defined as a detection that has a center
distance within a distance threshold to a ground-truth annota-
tion [6]. mAP computes the mean of AP over classes, where per-
class AP is the averaged area under the precision-recall curves
with distance thresholds of [0.5, 1, 2, 4] meters.
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Hierarchical Mean Average Precision (mAPH ). For
safety-critical applications, it is more desirable to localize-but-
misclassify an object than miss-detect this object, e.g., detecting
but misclassifying a child as adult is better than not detecting
this child. Therefore, we present hierarchical mean average
precision (mAPH ), which considers such semantic relationships
across classes to award partial credit. We use APH as a supplemen-
tary diagnostic tool to analyze how LT3D detectors make mistakes.
To encode inter-class relationships, we leverage the semantic
hierarchy (Fig. 4) such as the one defined by nuScenes [6]. We
derive partial credit as a function of semantic similarity using the
least common ancestor (LCA) distance metric. LCA has been
proposed for image classification [56], [57] but not for object
detection. Extending this metric to object detection is challenging
as we must jointly evaluate semantic and spatial overlap. For
clarity, we describe how to compute APH for a class C .

LCA=0: Consider the predictions and ground-truth boxes for
C . Label the set of predictions that overlap with ground-truth
boxes for C as true positives. Other predictions are false positives.
This is identical to the standard mAP metric.

LCA=1: Consider the predictions for C , and ground-truth
boxes for C and its all sibling classes with LCA distances to C of
1. Label the predictions that overlap a ground-truth box of C as a
true positive. Label the predictions that overlap sibling classes as
ignored [55]. All other predictions for C are false positives.

LCA=2: Consider the predictions for C and ground-truth
boxes for C and all its sibling classes with LCA distances to
C no greater than 2. For nuScenes, this includes all classes. Label
the set of predictions that overlap ground-truth boxes for C as true
positives. Label the set of predictions that overlap other classes as
ignored. All other predictions for C are false positives.

4 LT3D METHODS: THE DEVIL IS IN THE DETAILS

To address LT3D, we first retrain state-of-the-art (SOTA) detectors
on all long-tailed classes. We consider the following detectors:

• LiDAR-based 3D Detectors: CenterPoint [12], PointPillars
[17], TransFusion-L [34], BEVFusion-L [35], CMT-L [10];

• RGB-based 3D Detectors: FCOS3D [13], PolarFormer [25],
BEVFormer [23];

• RGB-based 2D Detectors: YOLOV7 [58], and DINO [11];
• End-to-End Multi-modal 3D Detectors: TransFusion [34],

BEVFusion [35], CMT [10], and DeepInteraction [59].
In Section 4.1 and 4.2, we introduce two modifications that
consistently improve LT3D performance, and describe our multi-
modal late-fusion framework.

4.1 Grouping-Free Detector Head

Extending existing 3D detectors to train with more classes is
surprisingly challenging. Many contemporary networks use a
multi-head architecture that groups classes of similar size and
shape to facilitate efficient feature sharing [12], [18]. For example,
CenterPoint [12] groups pedestrian and traffic-cone
since these objects are both tall and skinny. However, this
multi-head grouping design may not work for super-classes like
pushable-pullable and debris that contain diverse ob-
jects of different sizes and shapes. Moreover, in the multi-head
design, each head is a group-specific detector that consists of
several layers with lots of parameters. This makes multi-head
grouping difficult to scale for a large number of classes. To
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Fig. 4: The nuScenes dataset defines a semantic hierarchy for
all annotated classes (Fig. 1). We highlight common classes in
white and rare classes in gold. The standard nuScenes bench-
mark makes two choices for dealing with rare classes: (1) ig-
nore them (e.g., stroller and pushable-pullable), or (2)
group them into coarse-grained classes (e.g., adult, child,
construction-worker, police-officer are grouped as
pedestrian). Since the pedestrian class is dominated by
adult (Fig. 1), the standard benchmarking protocol masks the chal-
lenge of detecting rare classes like child and police-officer.
We explicitly incorporate this semantic hierarchy to evaluate LT3D
performance via the proposed mAPH metric described in Sec. 3.

address these issues, we treat each class as its own group to
avoid hand-crafted grouping heuristics and design a group-free
strategy, in which each class has only one linear layer as its
detector (Fig. 7) and all classes share a single detector head.
This design significantly reduces the number of parameters and
allows learning the shared feature backbone collaboratively with
all classes, effectively mitigating overfitting to rare classes. Adding
a new class is as simple as adding a single linear layer to the
detector head. Importantly, we demonstrate that our grouping-free
detector head outperforms conventional grouping-based methods
in the supplement.

4.2 Training with a Semantic Hierarchy
The nuScenes dataset defines a semantic hierarchy (Fig. 4) for
all classes, grouping semantically similar classes under coarse-
grained categories [6]. We leverage this hierarchy during train-
ing. Specifically, we train detectors to predict three labels for
each object: its fine-grained class (e.g., child), its coarse class
(e.g., pedestrian), and the root class object. We adopt a
grouping-free detector head (Fig. 7) that outputs separate “multi-
task” heatmaps for each class, and use a per-class sigmoid focal
loss [60] rather than multi-class cross-entropy loss to avoid nor-
malizing class probabilities across fine-grained and super-classes.
It is worth noting that our approach does not explicitly enforce
a tree-like hierarchy, and can be applied to more complex label
relationships [61]. Crucially, adding a vehicle heatmap does
not directly interfere with the car heatmap. However, this might
produce repeated detections on the same test object (e.g. a single
ground-truth car may be detected as a car, vehicle, and
object). We address that by simply ignoring coarse detections at
test time. We explore alternatives in the supplement and conclude
that they achieve similar LT3D performance. Perhaps surprisingly,
this training method improves detection performance not only for
rare classes, but also for common classes (Table 4).

4.3 Multimodal Filtering for Detection Fusion
Rare class instances are often small and can be challenging to
recognize from sparse (LiDAR) geometry alone – even humans
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Fig. 5: Multi-Modal Filtering (MMF) effectively removes high-
scoring false-positive LiDAR detections. The green boxes are ground-
truth strollers, while the blue boxes are stroller detections
from the LiDAR-based detector CenterPoint [12] (left) and RGB-
based detector FCOS3D [13] (mid). The final filtered result removes
LiDAR detections not within m meters of any RGB detection, shown
in the red region, and keeps all other LiDAR detections, shown in the
white region (right).

struggle to find strollers in LiDAR point clouds. This sug-
gests that one can leverage multi-modal cues to improve LT3D.
First, we find that, although LiDAR-based detectors are widely
adopted for 3D detection, they produce many high-scoring false
positives (FPs) for rare classes due to misclassification. We focus
on removing such FPs. To this end, we use an RGB-based 3D
detector (e.g., FCOS3D [13]) to filter out high-scoring false-
positive LiDAR detections by leveraging two insights: (1) LiDAR-
based 3D-detectors can achieve high recall and precise 3D local-
izations for TPs, and (2) RGB-based 3D-detections are accurate
w.r.t recognition although their 3D localization is poor. Fig. 5
demonstrates our Multi-Modal Filtering (MMF) strategy. For each
RGB detection, we keep LiDAR detections within a radius of m
meters and remove all the other LiDAR detections. We denote this
method as MMF(DL, DR), where DL and DR are any 3D LiDAR
detector and 3D RGB detector, respectively. Table 2 demonstrates
that MMF greatly improves LT3D.

Limitations of Multi-Modal Filtering. Despite the effective-
ness of multi-modal filtering, this approach is sensitive to the
classification accuracy of FCOS3D when matching LiDAR and
RGB-based detections, leading to many correctly localized but
misclassified detections. We use a confusion matrix to further
analyze the misclassifications within each superclass, as shown
in Fig. 6. We explain how to compute a confusion matrix for
the detection task: For each superclass, we construct a confusion
matrix, in which the entry (i, j) indicates the misclassification

Vehicle Pedestrian Movable

( c
) 

(b
) 

(a
)

(f) 
(e

) 
(d

)
( h

) 
(g

)

0.87 0.1 0.01 0.01 0 0 0.01 0

0.69 0.24 0.02 0.02 0.02 0 0.01 0

0.46 0.2 0.21 0.02 0.04 0 0.04 0.03

0.15 0.28 0.02 0.5 0.04 0 0 0

0.21 0.25 0.07 0.04 0.38 0 0.01 0.03

0.8 0.09 0.03 0 0.02 0.02 0.01 0.02

0.53 0.07 0.02 0 0.01 0 0.23 0.14

0.47 0.07 0.03 0 0.02 0 0.17 0.24
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

(h) bicycle

(g) m
otorcycle

(f) e
mergency-v.

(e) tra
iler

(d) bus

(c) constru
ction-v.

(b) tru
ck

(a) car

(a
)

(b
)

(c)
(d

)
(e

)
(f)

(g
)

0.95 0.01 0 0.04 0 0 0

0.93 0.01 0 0.04 0 0 0.01

0.92 0 0.01 0.06 0 0 0.01

0.92 0 0 0.07 0 0 0

0.93 0 0 0.05 0.01 0 0.01

0.91 0.02 0 0.04 0 0 0.03

0.92 0.01 0.05 0 0 0.02
0.0

0.2

0.4

0.6

0.8

(a) adult

(b) child 

(c) police-officer 

(e) personal-m
obility 

(f) w
heelchair 

(g) str
oller 

(d) constru
ction-work 

0

 
 

0.31 0.31 0.36 0.01

00.210.760.03

0.05 0.35 0.58 0.01

0.14 0.32 0.51 0.03

barrier

(b)
(c) tra

ffic-cone
(d) debris

(d
)

(c
)

(b
)

(a
) 0.7

0.6
0.5
0.4
0.3
0.2
0.1
0.0

(a) push-pull

Fig. 6: We analyze our multi-modal filtering (MMF) approach. Rare
classes are most often confused by the dominant class (in blue)
in each superclass: (left) Vehicle is dominated by car, (mid)
Pedestrian is dominated by adult, and (right) Movable is
dominated by barrier. We find that class confusions are rea-
sonable. Car is often mistaken for truck. Similarly, truck,
construction-vehicle and emergency-vehicle are most
often mistaken for car. Bicycle and motorcycle are some-
times misclassified as car, presumably because they are some-
times spatially close to cars. Adults have similar appearance to
police-officer and construction-worker, and they are
often co-localized with child and stroller.
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Fig. 7: We leverage the semantic hierarchy defined in the nuScenes
dataset (Fig. 4) to train LT3D detectors by predicting class labels at
multiple levels of the hierarchy for an object: its fine-grained label
(e.g., child), its coarse class (e.g., pedestrian), and the root-
level class object. This means that the final vocabulary of classes
is no longer mutually exclusive, so we use a sigmoid focal loss that
learns separate spatial heatmaps for each class.

rate of class-i objects as class-j. Specifically, given a class i,
we find its predictions that match ground-truth boxes within a
2m center-distance of class-i and all its sibling classes (LCA=1,
within the corresponding superclass); we ignore all unmatched
detections. This allows us to count the mis-classifications of class-
i objects into class-j. We normalize these counts to produces
misclassification rates. We find that rare classes are most often
confused by the dominant class in each superclass: Vehicle is
dominated by car, Pedestrian is dominated by adult, and
Movable is dominated by barrier. We posit that this can be
addressed with more accurate RGB-based classifiers, motivating
our study of multi-modal late-fusion (MMLF) from first principles.

4.4 Delving into Multi-Modal Late-Fusion for LT3D

Motivated by the effectiveness of our frustratingly simple multi-
modal filtering (MMF) approach, we delve into this multi-modal
late-fusion (MMLF) strategy. We explore three questions from first
principles (Fig. 3): (1) how do we effectively incorporate RGB
information, (2) how do we match RGB and LiDAR detections,
and (3) how do we fuse them. We denote our final approach as
MMLF(DL, DR) in Table 1, where DL is any 3D LiDAR detector
and DR is any 2D RGB detector.

4.4.1 How Do We Incorporate RGB Information?
Although LiDAR offers accurate localization, LiDAR-only de-
tectors struggle to recognize objects using sparse LiDAR alone.
RGB images provide complementary information that is essential
for identifying objects and disambiguating those that are geo-
metrically similar in point clouds but semantically different in
images, e.g., construction worker vs. police officer.
In the last subsection, we proposed multimodal filtering (MMF)
(Fig. 5), a strategy that ensembles a 3D RGB detector and a
3D LiDAR detector, yielding remarkable improvements for LT3D
(Table 2). However, we find that ensembling a 2D RGB detector
and a 3D LiDAR detector yields more significantly better LT3D
performance. We present insights on why using a 2D detector to
incorporate RGB information is better and ablate the impact of
using 2D vs. 3D RGB detectors for late-fusion in Table 3.

2D RGB detectors are more mature. 2D object detection
is a fundamental problem in computer vision [55], [62], [63]
that has matured in recent years and model trade-offs are well
understood [15], [60], [63], [64]. In this work, we consider two
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state-of-the-art 2D RGB detectors, YOLOV7 [58] and DINO [11].
YOLOV7 is a real-time detector that identifies a number of
training techniques that nearly doubles the inference efficiency
over prior work without sacrificing performance. DINO [11] is a
recent transformer-based detector that improves upon DETR [16]
using denoising anchor boxes. As 2D detectors do not make 3D
predictions (e.g., depth and rotation), understanding how to best
leverage them in the context of LT3D is a key challenge.

2D RGB detectors can be trained with more diverse
data. Training 2D RGB detectors only requires 2D bounding
box annotations, which are significantly cheaper to collect than
3D cuboids used for training 3D RGB detectors [13], [25].
Since annotating 3D amodal cuboids is both expensive and non-
trivial (compared to bounding-box annotations for 2D detection),
datasets for monocular 3D RGB detection are considerably smaller
and less diverse than their 2D detection counterparts. For example,
nuScenes [6] (published in 2020) annotates 144K RGB images
of 23 classes using 3D cuboids, while COCO [55] (an early 2D
detection dataset published in 2014) annotates 330K images of
80 classes using 2D bounding boxes. This allows us to pretrain
2D RGB detectors on significantly larger, more diverse, publicly
available datasets [65], [66], [67], [68], [69]. We demonstrate in
Fig. 11 that leveraging existing 2D detection datasets helps train
stronger 2D detectors, further improving LT3D performance.

4.4.2 How Do We Match Uni-Modal Detections?

Finding correspondence between two sets of RGB and LiDAR uni-
modal detections is an essential step in the late-fusion framework
(Fig. 3B). Our previous multi-modal filtering method [9] matched
3D RGB and 3D LiDAR detections using center distance (Fig. 5).
However, precisely matching detections in 3D is difficult due to
depth estimation errors from 3D RGB detectors. Instead, we opt
to match 2D RGB and 3D LiDAR detections. Prior work attempts
to inflate 2D detections to 3D (using LiDAR points [70]), but we
find that matching inflated 2D detections also yields noisy 3D
boxes (due to outlier points from the background) and reduces
overall match quality. In contrast, we match uni-modal detections
by projecting 3D LiDAR detections onto the 2D image plane,
avoiding additional noise due to imprecise depth estimates. We
ablate the impact of matching in 3D versus on the 2D image plane
in Table 3, and present our 2D matching algorithm below.

Spatial matching on the 2D image plane. Using the available
sensor extrinstics, we project 3D LiDAR detections onto the 2D
image plane. We then use the IoU metric to determine overlap
between (projected) LiDAR and 2D RGB detections. A 2D RGB
detection and a (projected) 3D LiDAR detection are considered

3D LiDAR Detection

2D RGB Detection

LiDAR Point Cloud

Multi-View RGB 3D Detection

2D Projection

2D Matching

Detection Fusion 
with Score Calibration & 
Probablistic Ensembling

Fig. 8: Our multi-modal late-fusion (MMLF) strategy takes 3D
LiDAR and 2D RGB detections as input (Fig. 3A), matches 2D RGB
and (projected) 3D LiDAR detections on the image plane (Fig. 3B),
and fuses matched predictions with score calibration and probabilistic
ensembling to produce 3D detections (Fig. 3C).

a match if their IoU is greater than a threshold. Although con-
ceptually simple, this matching method works significantly better
than using center distance to match detections in 3D (cf. bottom
two rows in Table 3). Spatially matching uni-modal detections
using 2D IoU yields three categories of detections: matched detec-
tions, unmatched RGB detections (that do not have corresponding
LiDAR detections), and unmatched LiDAR detections (that do
not have corresponding RGB detections). We handle unmatched
detections below and present our fusion strategy for matched
detections in the next subsection.

Handling unmatched detections. We remove unmatched 2D
RGB detections, positing that any unmatched RGB detections are
likely to be false positives given that LiDAR detectors tend to yield
high recall [9]. Further, accurately inflating 2D RGB detections to
3D remains challenging. For unmatched 3D LiDAR detections, we
down-weight their detection confidence scores by w (inspired by
SoftNMS [71]). We optimize for w by grid search on a validation
set and set w = 0.4.

4.4.3 How Do We Fuse Matched Uni-Modal Detections?
As illustrated by Fig. 3C and Fig. 9, detections may match
spatially but not semantically. To address this, we propose a
semantic matching heuristic. Given a pair of spatially matched
RGB and LiDAR detections, we consider two cases: matched
detections with semantic disagreement (e.g., RGB and LiDAR
predict different classes), and matched detections with semantic
agreement (e.g., RGB and LiDAR predict the same class).

Addressing semantic disagreement between modalities. If
the two modalities predict different semantic classes, we use the
confidence score (which is calibrated as explained below) and
class label of the RGB-based detection and the 3D box extent from
the LiDAR-based detection. Intuitively, RGB detectors can predict
semantics more reliably from high resolution images than LiDAR-
only detectors. This helps correct misclassifications of geometri-
cally similar but semantically different objects produced by the 3D
LiDAR detector, as shown in Fig. 9. Importantly, prior late-fusion
methods like CLOCS [38] and our MMF only perform late-fusion
on matched predictions with semantic agreement and do not fix
misclassifications. We find that handling such misclassifications is
critical for improving rare class performance (Table 1).

If both modalities predict the same semantic class, we perform
score fusion and probablistic ensembling [72] as described below.
Note that the confidence scores of RGB and LiDAR detections are
not directly comparable by default: LiDAR-based detectors are
often under-confident as it is difficult to distinguish foreground-
vs-background using sparse LiDAR alone. Therefore, score cali-
bration is crucial for fusion. Below, we explore score calibration
of RGB (xRGB) and LiDAR (xLiDAR) detections.

Score calibration. We calibrate detection confidences per
model by tuning a temperature τc for the logit score of class c
on a validation set before applying a sigmoid transform [72], [73],
i.e., sigmoid(logitc/τc). Optimally tuning per-class τc is compu-
tationally expensive as it requires tuning for all classes at the
same time. Instead, we choose to greedily tune each τc, optimizing
per-class AP on a val-set for each class progressively ordered by
their cardinalities. It is worth noting that this score calibration
is only performed once in training and tuned τc and p(c) do
not need further optimization during inference. Importantly, score
calibration does not increase runtime or complexity.

Probabilistic ensembling. We assume independent class prior
p(c) and conditional independence given the class label c [72],
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i.e., p(xRGB, xLiDAR|c) = p(xRGB|c)p(xLiDAR|c). We compute the
final score as

p(c|xRGB, xLiDAR) = p(xRGB, xLiDAR|c)p(c) / p(xRGB, xLiDAR)

∝ p(xRGB, xLiDAR|c)p(c)
∝ p(xRGB|c)p(xLiDAR|c)p(c)
∝ p(c|xRGB)p(c|xLiDAR) / p(c)

where p(c|xRGB) and p(c|xLiDAR) are the posteriors after calibra-
tion. Unlike the balanced class distribution studied in [72], p(c)
can significantly impact the final long-tailed performance. To max-
imize detection accuracy, the optimal tuning practice is to jointly
optimize all class priors p(c) altogether, which is computationally
expensive. Similar to score calibration, we greedily tune p(c), one
by one ordered by class cardinality. Probabilistic ensembling does
not increase inference time or complexity.

5 EXPERIMENTS

We conduct extensive experiments to better understand the LT3D
problem and gain insights by validating our techniques described
in Sec. 4. Specifically, we aim to answer the following questions:1

1) Are rare classes more difficult to detect than common
classes?

2) Are objects from rare classes sufficiently localized but mis-
classified?

3) Does training with the semantic hierarchy improve detection
performance for LT3D?

4) Does multi-modal late-fusion help detect rare classes?
We compare our multi-modal late-fusion (MMLF) approaches

(Fig. 5 and 8) with prior works and present a detailed ablation
study to further addresses the three motivating questions in Fig. 3.
Our approach improves over prior works by 5.9 mAP, notably
improving by 7.2 mAP on rare classes (Table 1).

Datasets. To explore LT3D, we use the well established
nuScenes [6] and Argoverse 2.0 (AV2) [4] datasets. Other AV
datasets such as KITTI [2] and Waymo [5] do not support the
study of LT3D as they only annotate three common classes.
nuScenes and AV2 have 18 and 26 fine-grained classes, respec-
tively, which follow long-tailed distributions. To quantify the long-
tail, we compute the imbalance factor (IF), defined as the ratio
between the numbers of annotations of the most and the least
common classes [44]: nuScenes and AV2 have an IF=1,670 and
2,500 respectively, which are significantly more imbalanced than
existing long-tail image recognition benchmarks, e.g., iNaturalist
(IF=500) [74] and ImageNet-LT (IF=1,000) [75]. nuScenes ar-
ranges classes in a semantic hierarchy (Fig. 4); AV2 does not
provide a semantic hierarchy but we construct one based on the
nuScenes’ hierarchy (please refer to the supplement for details).
Following prior work, we use official training and validation
sets. We focus on nuScenes in the main paper and AV2 in the
supplement. Our primary conclusions hold for both datasets.

5.1 State-of-the-Art Comparison on nuScenes

Table 1 compares our MMF and MMLF approaches with prior
work on nuScenes. Fig. 9 presents qualitative results. We adapt
existing methods (which were previously trained on 10 classes in
nuScenes) for LT3D by retraining them on all 18 classes.

1. Answers: yes, yes, yes, yes.

TABLE 1: Benchmarking results on nuScenes. We denote the RGB
and LiDAR modalities by C and L, respectively. Our MMLF fuses
3D LiDAR and 2D RGB detections (from CenterPoint and DINO,
respectively) with score calibration and probabilistic ensembling.
MMLF performs the best averaged across all common and rare
classes, notably outperforming end-to-end multi-modal methods such
as BEVFusion [35], DeepInteraction [59], and CMT [10]. Impor-
tantly, our MMLF approach nearly doubles the detection performance
achieved by prior work on classes with few examples!

Method Modality All Many Medium Few

FCOS3D [13] C 20.9 39.0 23.3 2.9
BEVFormer [23] C 27.3 52.3 31.6 1.4
PolarFormer [25] C 28.0 54.0 31.6 2.2

CenterPoint [12] L 40.4 77.1 45.1 4.3
TransFusion-L [34] L 38.5 68.5 42.8 8.4
BEVFusion-L [35] L 42.5 72.5 48.0 10.6
CMT-L [10] L 34.7 73.4 35.9 1.1

CLOCS [38] C+L 40.0 68.2 45.7 10.0
TransFusion [34] C+L 39.8 73.9 41.2 9.8
BEVFusion [35] C+L 45.5 75.5 52.0 12.8
DeepInteraction [59] C+L 43.7 76.2 51.1 7.9
CMT [10] C+L 44.4 79.9 53.0 4.8

CenterPoint [12] + RCNN [76] C+L 34.0 64.8 37.5 4.3
MMF(CenterPoint, FCOS3D) (Ours) C+L 43.6 77.1 49.0 9.4
MMLF(CenterPoint, DINO) (Ours) C+L 51.4 77.9 59.4 20.0

CenterPoint [12], a popular LiDAR-only 3D detector, is unable
to detect rare objects, achieving just 4.3 mAP on classes with
few examples. This is expected as it is difficult to identify rare
objects from sparse LiDAR points alone. Perhaps surprisingly,
the transformer-based 3D LiDAR detector BEVFusion-L performs
considerably better on few classes, achieving 10.6 mAP, but it
underperforms CenterPoint by 4.6 mAP on classes with many
examples. We posit that limited training data in-the-tail and class
imbalance make it difficult to learn generalizable features, prevent-
ing robust LT3D performance. In contrast, BEVFusion [23], which
is an end-to-end trained multi-modal method, performs 3.0 mAP
better than the LiDAR-only variant (BEVFusion-L), confirming
the benefit of using both RGB and LiDAR for LT3D.

Next, we implement another simple baseline, termed “Cen-
terPoint + RCNN”, that trains a region-based CNN (RCNN)
[76] classifier on cropped regions corresponding to projected 3D
detections. Notably, it underperforms CenterPoint by 6.4 mAP,
presumably because learning classifiers on cropped regions does
not exploit contextual information and leads to worse classification
accuracy. This suggests that late-fusion cannot be simply solved
with a 3D LiDAR detector and a strong 2D classifier. Our
multimodal filtering method MMF(CenterPoint, FCOS3D) keeps
CenterPoint detections that are close to monocular 3D RGB detec-
tions produced by FCOS3D in 3D and discards all other LiDAR
predictions. This simple baseline achieves 9.4 mAP on classes
with few examples. Lastly, we re-implement CLOCS [38] by
fusing detections from DINO and CenterPoint respectively. Note
that CLOCS only fuses predictions from the same class, which
prevents re-labeling misclassified LiDAR detections. However,
CLOCs performs worse than our MMF baseline. By carefully
considering design choices outlined in Fig. 3, MMLF(CenterPoint,
DINO) improves over MMF(CenterPoint, FCOS3D) by 7.8 mAP!

5.2 Ablation Studies and Empirical Analysis

We conduct extensive ablations to validate our proposed MMLF
approach. We provide additional results in the supplement.
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Fig. 9: Three examples demonstrate how our multi-modal late-fusion (MMLF) approach improves LT3D by ensembling 2D RGB detections
(from DINO [11]) and 3D LiDAR detections (from CenterPoint [12]). In all examples, MMLF correctly relabels detections which are
geometrically similar (w.r.t size and shape) in LiDAR but are visually distinct in RGB, such as bus-vs-truck, adult-vs-stroller, and
adult-vs-child.

TABLE 2: Ablation on Hierarchy Loss and Multi-Modal Filtering
(MMF). Training with the semantic hierarchy improves both Point-
Pillars [17] and CenterPoint [12] for LT3D by >1% mAP over All
classes. Moreover, MMF yields 4∼11 mAP improvement on Medium
and Few classes, showing the benefit of late fusion!

Method Modality All Many Medium Few

FCOS3D [13] C 20.9 39.0 23.3 2.9

PointPillars [17] L 30.0 64.2 28.4 3.4
+ Hierarchy Loss L 31.2 66.4 30.4 2.9
+ MMF(PointPillars, FCOS3D) C+L 35.8 66.2 41.0 4.4

CenterPoint [12] L 39.2 76.4 43.1 3.5
+ Hierarchy Loss L 40.4 77.1 45.1 4.3
+ MMF(CenterPoint, FCOS3D) C+L 43.6 77.1 49.0 9.4

5.2.1 Analysis on Training with Semantic Hierarchy
We validate the benefits of training with semantic hierarchy by
modifying LiDAR-based detectors (PointPillars [17] and Center-
Point [12]) to jointly predict class labels at different levels of
the semantic hierarchy. For example, we modify the detector to
additionally classify stroller as pedestrian and object.
The semantic hierarchy naturally groups classes based on shared
attributes and may have complementary features, helping train a
detector that allows feature sharing across common and rare
classes and leads to improved performance. Table 2 highlights that
this approach (“+ Hierarchy Loss”) effectively improves LT3D
accuracy by >1 mAP over all classes.

5.2.2 Analysis on Multi-Modal Late-Fusion
We study the trade-off between using 2D and 3D RGB detectors,
and matching in the 2D image plane and in 3D in Table 3. We
further examine the impact of using additional data and study
different fusion strategies in Table 4.

How do we incorporate RGB information? Table 2 demon-
strates that incorporating RGB information (by matching and
filtering 3D LiDAR detections) using a 3D RGB detector greatly
improves LT3D. We now evaluate the impact of using 2D RGB-
based detectors (e.g., YOLOV7 and DINO) versus 3D RGB-

TABLE 3: Fusing uni-modal detections in 3D vs. on the 2D image
plane. We evaluate the impact of fusing 3D LiDAR detections (from
CenterPoint trained with hierarchy loss) with 2D RGB and 3D RGB
detections in 3D versus on the image plane. We match and filter
detections in 3D using center distance (MMF), and match and filter
detections in the 2D image plane using IoU (MMLF). Following [70],
we inflate 2D detections to 3D using LiDAR points within the box
frustum. We project 3D detections to the image plane using provided
sensor extrinsics. Results show that matching 3D RGB detections
in 3D and on the image plane yields similar results. Unsurprisingly,
inflating 2D RGB detections for matching in 3D performs worse than
matching 3D RGB detections in 3D. In contrast, filtering LiDAR-
based detections using 2D detections in the image plane (bottom right
panel) significantly improves performance for classes with medium
and few examples by >10 mAP. This suggests that 2D detectors
achieve better detection performance compared to 3D RGB detectors.
We further verify this in the supplement.

Method Fusion in 3D (MMF) Fusion in 2D (MMLF)
All Many Medium Few All Many Medium Few

CenterPoint 40.4 77.1 45.1 4.3 40.4 77.1 45.1 4.3
+ FCOS3D [13] 42.9 76.6 48.7 8.1 42.6 75.0 49.4 7.7
+ BEVFormer [23] 43.2 76.9 50.8 6.3 42.8 75.2 51.4 5.7
+ PolarFormer [25] 42.8 76.8 50.0 6.1 42.6 75.1 51.1 5.6
+ YOLOV7 [58] 40.1 76.1 43.8 5.8 45.7 77.1 52.8 11.2
+ DINO [11] 40.3 76.2 44.1 5.9 49.5 77.4 57.7 16.7

based detectors (e.g., FCOS3D, BEVFormer, PolarFormer), and
matching LiDAR detections with 2D RGB detections in 3D versus
on the 2D image plane in Table 3. Results show that matching
LiDAR detections with 2D RGB detections on the 2D image plane
(bottom right) performs best.

How do we match detections from uni-modal detectors?
MMF keeps LiDAR detections within a radius of m meters for
each RGB detection and removes all the others that are not close
to any RGB-based detections. This works well when using a
3D RGB detector, e.g., MMF with FCOS3D, BEVFormer, and
PolarFormer improves over the LiDAR-only detector CenterPoint
by 2 mAP, as shown in Table 3. Moreover, matching inflated 2D
RGB detections in 3D, performs worse than matching 3D RGB
detections, notably achieving marginally lower accuracy than the
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3D LiDAR Det. Projected onto Img. Plane 2D RGB Detections Fused Det.: Prediction vs. Ground-Truth (GT)

Pred: Construction Worker

GT: Police Officer
Pred: Construction Worker

TransFusion 3D Det. Visualized in BEV

Pred: Adult Pred: Adult
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Pred: Adult

TransFusion 3D Det. Visualized on Images

Fig. 10: Both our MMLF method (columns 1-3) and TransFusion [34] (columns 4 -5) share the same failure cases. In the first and second row,
the 2D RGB detector DINO detects the heavily occluded cars but 3D LiDAR detector fails to detect them. As a result, our MMLF misses these
cars because it throws away unmatched RGB detections which do not have accurate 3D information. In the third row, we see that, although
both the LiDAR and RGB detectors fire on the object (whose ground-truth label is police-officer), the LiDAR detector classifies it
as adult and RGB detector classifies it as construction-worker. As a result, the final detection is incorrect w.r.t the predicted label.
TransFusion also misclassifies this object as an adult.

TABLE 4: Progressively adding training components improves LT3D
performance, confirming that 2D RGB detectors are better suited for
multi-modal late-fusion, matching projected 3D LiDAR detections
on the 2D image plane outperforms matching 2D RGB detections
inflated to 3D, and score calibration prior and probabilistic fusion
improves performance. Importantly, a majority of our performance
improvement can be attributed to matching and filtering on the 2D
image plane with DINO. In addition, training with external data
further improves rare class accuracy by 4.2 mAP.

Method ∆ All Many Medium Few

CenterPoint [12] 39.2 76.4 43.1 3.5
+ Hierarchy Loss +1.2 40.4 77.1 45.1 4.3
+ MMF w/ DINO +7.5 47.9 77.1 55.8 14.4
+ External Data +1.9 49.8 77.1 57.1 18.6
+ Score Calibration +0.7 50.5 77.8 58.2 18.7
+ Probabilistic Ensembling +0.9 51.4 77.9 59.4 20.0

LiDAR-only baseline.
Table 3 shows that projecting LiDAR detections on the 2D

image plane and fusing them with 2D RGB detections signifi-
cantly improves performance for classes with medium and few
examples by more than 10 mAP. In contrast, projecting 3D
RGB detections for matching on the 2D image plane performs
worse than matching 2D RGB detections on the 2D image plane,
suggesting that MMLF performs better with 2D RGB detectors
than 3D RGB detectors.

How do we fuse matched detections? Prior to fusion,
we first calibrate the scores of LiDAR and RGB detections to
ensure that they are comparable. This improves accuracy by 0.7
mAP averaged over all classes (Table 4). Once calibrated, we
probabilistically fuse matched detections to generate the final set
of detections. Table 4 shows that probabilistic fusion improves
performance by 0.9 mAP.

5.2.3 Analysis of Misclassification
We evaluate CenterPoint [12] and CMT [10] using the hierarchical
mAP metric (mAPH ), which considers semantic relationships
across classes to award partial credit. In safety-critical appli-
cations, detecting but misclassifying objects (as a semantically
related category) is more desirable than a missed detection (e.g.,
detecting but misclassifying a child as an adult is preferable
to not detecting this child). Table 5 lists the results of applying

TABLE 5: Diagnosis using the mAPH metric on selected classes.
We analyze CenterPoint [12] and CMT [10], with our proposed group-
free detector head, hierarchy loss, and MMLF (using the 2D RGB
detector DINO [11]). Comparing the rows of LCA=0 for CenterPoint
and CMT, we see that MMLF significantly improves on rare classes
(in blue), e.g., construction-vehicle (CV), bicycle, motorcycle (MC),
construction-worker (CW), stroller, and pushable-pullable (PP). More-
over, performance increases significantly from LCA=0 to LCA=1
compared against LCA=1 to LCA=2, suggesting that objects from
rare classes are often detected but misclassified as sibling classes.

Method mAPH Car Adult Truck CV Bicycle MC Child CW Stroller PP

CenterPoint [12] LCA=0 82.4 81.2 49.4 19.7 33.6 48.9 0.1 14.2 0.1 21.7

(original) LCA=1 83.9 82.0 58.7 20.5 35.2 50.5 0.1 18.3 0.1 22.0
LCA=2 84.0 82.4 58.8 20.7 36.4 51.0 0.1 19.5 0.1 22.6

CenterPoint LCA=0 88.1 86.3 62.7 24.5 48.5 62.8 0.1 22.2 4.3 32.7

(Group-Free) LCA=1 89.0 87.1 71.6 26.7 50.2 64.7 0.1 29.4 4.5 32.9
LCA=2 89.1 87.5 71.7 26.8 51.1 65.2 0.1 30.5 4.8 33.4

CenterPoint LCA=0 88.6 86.9 63.4 25.7 50.2 63.2 0.1 25.3 8.7 36.8
(Group-Free) LCA=1 89.5 87.6 72.4 27.5 52.2 65.2 0.1 32.4 9.4 37.0
+ Hierarchy Loss LCA=2 89.6 88.0 72.5 27.7 53.2 65.7 0.1 34.0 9.8 37.6

CenterPoint LCA=0 86.3 87.7 60.6 35.3 70.0 75.9 8.8 55.9 37.7 58.1
(Group-Free) LCA=1 86.8 88.3 68.5 37.3 70.4 77.1 16.2 66.0 51.5 58.2
+ Hier. + MMLF LCA=2 86.9 88.6 68.6 37.7 70.9 77.4 16.3 69.0 52.4 58.9

CMT [10] LCA=0 88.6 87.7 65.2 36.9 66.7 76.3 4.7 34.4 0.9 34.1

(RGB + LiDAR) LCA=1 89.1 88.3 73.3 38.8 67.6 77.2 7.3 50.6 1.2 34.6
LCA=2 89.1 88.6 73.4 39.0 68.3 77.7 7.7 52.6 1.3 35.6

CMT-L LCA=0 87.1 87.3 62.7 35.3 72.0 76.1 11.9 53.9 29.6 56.4
(LiDAR-only) LCA=1 87.6 87.8 69.6 36.4 72.3 76.8 16.7 63.4 50.6 56.6
+ MMLF LCA=2 87.6 88.1 69.7 36.7 72.7 77.3 16.9 66.3 53.2 57.3

our developed techniques including the group-free detector head,
the hierarchy loss, and MMLF using the 2D detector DINO.
Results reveal that (1) classes are most often misclassified as
their LCA=1 siblings within coarse-grained superclasses, (2) our
developed techniques significantly improve mAPH (especially on
rare classes), reducing misclassification between sibling classes.

5.2.4 Analysis of Failure Cases

We visualize common failure cases of MMLF and compare them
with the failure cases of TransFusion [34], an end-to-end trained
multi-modal detector. We find that our MMLF fails in cases of
occlusions (where there is no 3D information) and in cases where
the 2D RGB detector misclassifies objects. See Fig. 10 for detailed
analysis.
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Fig. 11: Training 2D detectors with more data (e.g., training with
nuScenes + nuImages vs. nuScenes only) and using better 2D detec-
tors (e.g., DINO vs. YOLOV7) improve performance on the proxy
task of 2D detection and the downstream 3D detection achieved by
our multi-modal late-fusion algorithm.

5.3 Limitations and Future Work

Our work does not directly study how addressing LT3D affects
downstream perception tasks. Future work should address this
limitation. Moreover, as shown in Fig. 11, simply training better
2D RGB detectors with more data provides a natural pathway
for improving LT3D performance. We find that 2D detection
accuracy is a strong proxy for final 3D LT3D performance. Recent
works in large-scale vision language models [77], [78], [79], [80],
[81] show promising zero-shot results in detecting rare classes.
Identifying ways of incorporating foundation models into our
late-fusion framework might improve LT3D further. In addition,
our proposed late-fusion approach is unlikely to work well for
objects that are visible in LiDAR but occluded in RGB images
(or visible in RGB images but occluded in LiDAR, but this is
unlikely because LiDARs are typically mounted higher than RGB
cameras). Notably, due to LiDAR and RGB sensors not being co-
located on the autonomous vehicle, some objects may be visible
in one modality but occluded in another. If an object is visible in
LiDAR but not in RGB, we would down-weight the confidence
scores of LiDAR-based detections that not supported by RGB-
based detections. In contrast, if an object is visible in RGB but not
in LiDAR, our 2D late-fusion pipeline would not be able to detect
this object in 3D.

6 CONCLUSION

We explore the problem of long-tailed 3D detection (LT3D), de-
tecting objects not only from common classes but also from many
rare classes. This problem is motivated by the operational safety
of autonomous vehicles (AVs) but has broad robotic applications,
e.g., elder-assistive robots [82] that fetch diverse items [83] should
address LT3D. To study LT3D, we establish rigorous evaluation
protocols that allow for partial credit to better diagnose 3D
detectors. We propose several algorithmic innovations to improve
LT3D, including a group-free detector head, a hierarchical loss that
promotes feature sharing across long-tailed classes, and present a
detailed exploration of multi-modal late-fusion for LT3D. We find
that 2D RGB detectors are better suited for late-fusion, matching
projected 3D LiDAR detections on the 2D image-plane outper-
forms matching 2D RGB detections inflated to 3D, and score
calibration and probabilistic fusion notably improve performance.
Our simple multi-modal late-fusion achieves state-of-the-art LT3D
performance on the nuScenes benchmark, improving over prior
works by 5.9 mAP over all long-tailed distributed classes!
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