arXiv:2511.09554v2 [cs.CV] 3 Feb 2026

Published as a conference paper at ICLR 2026

RF-DETR: NEURAL ARCHITECTURE SEARCH FOR
REAL-TIME DETECTION TRANSFORMERS

Isaac Robinson', Peter Robicheaux', Matvei Popov', Deva Ramanan?, Neehar Peri’
'Roboflow, 2Carnegie Mellon University

ABSTRACT

Open-vocabulary detectors achieve impressive performance on COCO, but of-
ten fail to generalize to real-world datasets with out-of-distribution classes not
typically found in their pre-training. Rather than simply fine-tuning a heavy-
weight vision-language model (VLM) for new domains, we introduce RF-DETR,
a light-weight specialist detection transformer that discovers accuracy-latency
Pareto curves for any target dataset with weight-sharing neural architecture search
(NAS). Our approach fine-tunes a pre-trained base network on a target dataset
and evaluates thousands of network configurations with different accuracy-latency
tradeoffs without re-training. Further, we revisit the “tunable knobs” for NAS
to improve the transferability of DETRs to diverse target domains. Notably,
RF-DETR significantly improves over prior state-of-the-art real-time methods on
COCO and Roboflow100-VL. RF-DETR (nano) achieves 48.0 AP on COCO,
beating D-FINE (nano) by 5.3 AP at similar latency, and RF-DETR (2x-large)
outperforms GroundingDINO (tiny) by 1.2 AP on Roboflow100-VL while run-
ning 20x as fast. To the best of our knowledge, RF-DETR (2x-large) is the first
real-time detector to surpass 60 AP on COCO. Our code is available on GitHub.

1 INTRODUCTION

Object detection is a fundamental problem in computer vision that has matured in recent
years (Felzenszwalb et al., 2009; Lin et al., 2014; Ren et al., 2015). Open-vocabulary detectors
like GroundingDINO (Liu et al., 2023) and YOLO-World (Cheng et al., 2024) achieve remarkable
zero-shot performance on common categories like car, truck, and pedestrian. However,
state-of-the-art vision-language models (VLMs) still struggle to generalize to out-of-distribution
classes, tasks and imaging modalities not typically found in their pre-training (Robicheaux et al.,
2025). Fine-tuning VLMs on a target dataset significantly improves in-domain performance at the
cost of runtime efficiency (due to heavy-weight text encoders) and open-vocabulary generalization.
In contrast, specialist (i.e., closed-vocabulary) object detectors like D-FINE (Peng et al., 2024) and
RT-DETR (Zhao et al., 2024) achieve real-time inference, but underperform fined-tuned VLMs like
GroundingDINO. In this paper, we modernize specialist detectors by combining internet-scale pre-
training with real-time architectures to achieve state-of-the-art performance and fast inference.

Are Specialist Detectors Over-Optimized for COCO? Sustained progress in object detection can
be largely attributed to standardized benchmarks like PASCAL VOC (Everingham et al., 2015)
and COCO (Lin et al.,, 2014). However, we find that recent specialist detectors implicitly overfit
to COCO at the cost of real-world performance using bespoke model architectures, learning rate
schedulers, and augmentation schedulers. Notably, state-of-the-art object detectors like YOLOV8
(Jocher et al., 2023) generalize poorly to real-world datasets with significantly different data distri-
butions from COCO (e.g., number of objects per image, number of classes, and dataset size). To
address these limitations, we present RF-DETR, a scheduler-free approach that leverages internet-
scale pre-training to generalize to real-world data distributions. To better specialize our model for
diverse hardware platforms and dataset characteristics, we revisit neural architecture search (NAS)
in the context of end-to-end object detection and segmentation.

Rethinking Neural Architecture Search (NAS) for DETRs. NAS discovers accuracy-latency
tradeoffs by exploring architectural variants within a pre-defined search space. NAS has been previ-
ously studied in the context of image classification (Tan & Le, 2019; Cai et al., 2019) and for model

https://github.com/roboflow/rf-detr
https://arxiv.org/abs/2511.09554v2

Published as a conference paper at ICLR 2026

sub-components like detector backbones Tan et al. (2020) and FPNs Ghiasi et al. (2019). Unlike
prior work, we explore end-to-end weight-sharing NAS for object detection and segmentation. Our
key insight, inspired by OFA (Cai et al., 2019), is that we can vary model inputs like image reso-
lution, and architectural components like patch size during training. Further, weight-sharing NAS
allows us to modify inference configurations like the number of decoder layers and query tokens
to specialize our strong base model without fine-tuning. We evaluate all model configurations with
grid search on a validation set. Importantly, our approach does not evaluate the search space un-
til the base model has been fully-trained on the target dataset. As a result, all possible sub-nets
(i.e., model configurations within the search space) achieve strong performance without further fine-
tuning, significantly reducing the computational cost of optimizing for new hardware. Interestingly,
we find that sub-nets not explicitly seen during training still achieve high performance (Appendix F),
suggesting that RF-DETR can generalize to unseen architectures. Extending RF-DETR for segmen-
tation is also relatively straightforward and only requires adding a lightweight instance segmentation
head. We denote this model as RF-DETR-Seg. Notably, this allows us to also leverage end-to-end
weight-sharing NAS to discover Pareto optimal architectures for real-time instance segmentation.

Standardizing Latency Evaluation. We evaluate our approach on COCO (Lin et al., 2014) and
Roboflow100-VL (RF100-VL) (Robicheaux et al., 2025) and achieve state-of-the-art performance
among real-time detectors. RF-DETR (nano) outperforms D-FINE (nano) by 5% AP on COCO
at comparable run-times, and RF-DETR (2x-large) beats GroundingDINO (tiny) on RF100-VL at a
fraction of the runtime. RF-DETR-Seg (nano) outperforms YOLOv11-Seg (x-large) on COCO while
running 4 X as fast. However, comparing RF-DETR’s latency with prior work remains challenging
because reported latency evaluation varies significantly between papers. Notably, each new model
re-benchmarks the latency of prior work for fair comparison on their hardware. For example, D-
FINE’s reported latency evaluation of LW-DETR (Chen et al., 2024a) is 25% faster than originally
reported. We identify that this lack of reproducibility can be primarily attributed to GPU power
throttling during inference. We find that buffering between forward passes limits power over-draw
and standardizes latency evaluation (Table 1).

Contributions. We present three major contributions. First, we introduce RF-DETR, a family of
scheduler-free NAS-based detection and segmentation models that outperform prior state-of-the-art
on RF100-VL (Robicheaux et al., 2025) and real-time methods with latencies < 40 ms on COCO
(Lin et al., 2014) (Figure 1). To the best of our knowledge, RF-DETR is the first real-time detector
to exceed 60 mAP on COCO. Next, we explore the “tunable-knobs” for weight-sharing NAS to
improve accuracy-latency tradeoffs for end-to-end object detection (Figure 3). Notably, our use of a
weight-sharing NAS allows us to leverage large-scale pre-training and effectively transfer to small
datasets (Table 4). Lastly, we revisit current benchmarking protocols for measuring latency and
propose a simple standardized procedure to improve reproducibility.

2 RELATED WORKS

Neural Architecture Search (NAS) automatically identifies families of model architectures with
different accuracy-latency tradeoffs (Zoph & Le, 2016; Zoph et al., 2018; Real et al., 2019; Cai et al.,
2018a). Early NAS approaches (Zoph & Le, 2016; Real et al., 2019) focused primarily on maxi-
mizing accuracy, with little consideration for efficiency. As a result, discovered architectures (e.g.,
NASNet and AmoebaNet) were often computationally expensive. More recent hardware-aware NAS
methods (Cai et al., 2018b; Tan et al., 2019; Wu et al., 2019) address this limitation by incorporating
hardware feedback directly into the search process. However, these methods must repeat the search
and training process for each new hardware platform. In contrast, OFA (Cai et al., 2019) proposes a
weight-sharing NAS that decouples training and search by simultaneously optimizing thousands of
sub-nets with different accuracy-latency tradeoffs. Contemporary methods typically evaluate NAS
for object detection by simply replacing standard backbones with NAS backbones in existing detec-
tion frameworks. Unlike prior work, we directly optimize end-to-end object detection accuracy to
find Pareto optimal accuracy-latency tradeoffs for any target dataset.

Real-Time Object Detectors are of significant interest for safety-critical and interactive applica-
tions. Historically, two-stage detectors like Mask-RCNN (He et al., 2017) and Hybrid Task Cascade
(Chen et al., 2019) achieved state-of-the-art performance at the cost of latency, while single-stage
detectors like YOLO (Redmon et al., 2016) and SSD (Liu et al., 2016) traded accuracy for state-

Published as a conference paper at ICLR 2026

COCO Object Detection COCO Instance Segmentation

50
60 Ty

! /7n—/—

RsO—"_ 45

YoLovs
YoLOvV11
—— D-FINE
—— RT-DETR
— LW-DETR YoLovs
—— RF-DETR (DINOV2-5) YoLov1l

Accuracy (MAP@50:95)
Accuracy (mAP@50:95)

35 RF-DETR (DINOv2-B) —— RF-DETR-Seg (DINOv2-S)
25
2.5 5.0 7.5 10.0 125 15.0 17.5 20.0 2.5 5.0 75 100 125 150 175 200 225
Latency (ms) Latency (ms)
COCO Object Detection RF100-VL Object Detection
80
89 R
XL /XL
75 — M—t
= RSO/R]O] 8 s R50. e
- R101
70 7 / — Xt
s = —
3 3
© k] /
& o N R18
Z 65 H s "
- - S
> S| //
g g N
5 60 384
g <
< YoLovs
55 YoLovil 83 — RF-DETR (NAS + Finetuned)
— DFINE — LWDETR
—— RT-DETR —— RT-DETR
— IW-DETR 82 — DFINE
50 —— RF-DETR (DINOV2-5) YoLovi1
RF-DETR (DINOv2-B) 81 YOLOv8
2.5 5.0 7.5 10.0 125 15.0 17.5 20.0 2 4 6 8 10 12 14 16

Latency (ms) Latency (ms)

Figure 1: Accuracy-Latency Pareto Curve. We plot the Pareto accuracy-latency frontier for real-
time detectors on the COCO detection val-set (top left, bottom left), COCO segmentation val-set
(top right), and RF100-VL test-set (bottom right). Since RF100-VL contains 100 distinct datasets,
we select target latencies for the N, S, M, L, XL, 2XL configurations, search for RF-DETR models
with latencies within 10% of the target and report their average performance after fine-tuning to
convergence. Importantly, all points along RF-DETR’s continuous Pareto curves for COCO are
derived from a single training run.

of-the-art runtime. However, modern detectors (Zhao et al., 2024) reexamine this accuracy-latency
tradeoff, simultaneously improving on both axes. Recent YOLO variants innovate on architecture,
data augmentation, and training techniques (Redmon et al., 2016; Wang et al., 2023; 2024; Jocher
et al., 2023; 2024) to improve performance while maintaining fast inference. Despite their effi-
ciency, most YOLO models rely on non-maximum suppression (NMS), which introduces additional
latency. In contrast, DETR (Carion et al., 2020) removes hand-crafted components like NMS and
anchor boxes. However, early DETR variants (Zhu et al., 2020; Zhang et al., 2022a; Meng et al.,
2021; Liu et al., 2022) achieved strong accuracy at the cost of runtime, limiting their use in real-
time applications. Recent works such as RT-DETR (Zhao et al., 2024) and LW-DETR (Chen et al.,
2024a) have successfully adapted high performance DETRs for real-time applications. Building on
LW-DETR, RF-DETR is the first real-time detector to achieve more than 60 AP on COCO.

Vision-Language Models are trained on large-scale, weakly supervised image-text pairs from the
web. Such internet-scale pre-training is a key enabler for open-vocabulary object detection (Liu
et al., 2023; Cheng et al., 2024). GLIP (Li et al., 2022) frames detection as phrase grounding with
a single text query, while Detic (Zhou et al., 2022) boosts long-tail detection using ImageNet-level
supervision (Russakovsky et al., 2015). MQ-Det (Xu et al., 2024) extends GLIP with a learnable
module that enables multi-modal prompting. Recent VLMs demonstrate strong zero-shot perfor-
mance and are often applied as black-box models in diverse downstream tasks (Ma et al., 2023; Peri
et al., 2023; Khurana et al., 2024; Osep et al., 2024; Takmaz et al., 2025). However, Robicheaux
et al. (2025) find that such models perform poorly when evaluated on categories not typically found
in their pre-training, requiring further fine-tuning. In addition, many vision-language models are
prohibitively slow, making them difficult to use for real-time tasks. In contrast, RF-DETR combines
the fast inference of real-time detectors with the internet-scale priors of VLLMs to achieve state-of-
the-art performance on RF100-VL and at all latencies < 40 ms on COCO.

Published as a conference paper at ICLR 2026

Detection Head

Class Head

Box Head

Image
Patches

Decoder Group 13

Decoder Group x N

ViT Backbone

Segmentation

i e L

i
i
+++ +++++ + Layer 6 " Depthwise Conv 6
i
r { BN |- [[
Block 3 i :
Layerx N i Depthwise Conv x N
i
1 FEN |- ([.
Block 2 ' +
Layer 1 ' i
Feed Forward ! Depthwise Conv 1
Positional i
I
|
ten !

Embeddings

Block 1
Non-Windowed Encoder Layer

Windowed Encoder Layer x 2 [m}¥,@
ey -
i
: i

Figure 2: RF-DETR Architecture. RF-DETR uses a pre-trained ViT backbone to extract multi-
scale features of the input image. We interleave windowed and non-windowed attention blocks to
balance accuracy and latency. Notably, the deformable cross-attention layer and segmentation head
both bilinearly interpolate the output of the projector, allowing for consistent spatial organization
of features. Lastly, we apply detection and segmentation losses at all decoder layers to facilitate
decoder drop out at inference.

3 RF-DETR: WEIGHT-SHARING NAS WITH FOUNDATION MODELS

In this section, we describe the architecture of our base model (Figure 2) and present the “tunable
knobs” of our weight-sharing NAS (Figure 3). Further, we highlight the limitations of hand-designed
learning-rate and augmentation schedulers, and advocate for a scheduler-free approach.

Incorporating Internet-Scale Priors. RF-DETR modernizes LW-DETR (Chen et al., 2024a) by
simplifying its architecture and training procedure to improve generalization to diverse target do-
mains. First, we replace LW-DETR’s CAEv2 (Zhang et al., 2022b) backbone with DINOv2 (Oquab
etal.,, 2023). We find that initializing our backbone with DINOv2’s pre-trained weights significantly
improves detection accuracy on small datasets. Notably, CAEv2’s encoder has 10 layers with a
patch size of 16, while DINOv2’s encoder has 12 layers. Our DINOv2 backbone has more layers
and is slower than CAEv2, but we make up for this latency using NAS (discussed next). Lastly, we
facilitate training on consumer-grade GPUs via gradient accumulation by using layer norm instead
of batch norm in the multi-scale projector.

Real-Time Instance Segmentation. Inspired by Li et al. (2023), we add a lightweight instance
segmentation head to jointly predict high quality segmentation masks. Our segmentation head bi-
linearly interpolates the output of the encoder and learns a lightweight projector to generate a pixel
embedding map. Specifically, we upsample the same low-resolution feature map for the detection
and segmentation heads to ensure that it contains relevant spatial information. Unlike MaskDINO
(Li et al., 2023), we do not incorporate multi-scale backbone features in our segmentation head to
minimize latency. Lastly, we compute the dot product of all projected query token embeddings (at
the output of each decoder layer transformed by a FFN) with the pixel embedding map to gener-
ate segmentation masks. Interestingly, we can interpret these pixel embeddings as segmentation

Published as a conference paper at ICLR 2026

i
A

8x8

Smaller Patches Larger Patches Fewer Layers More Layers
More Tokens Fewer Tokens Faster More Accurate
More Accurate Faster
a) Patch Embedding Interpolation b) Decoder Layers
Fewer Queries
Faster
[
More Queries Lower Resolution Higher Resolution Fewer Windows More Windows
More Accurate Faster More Accurate More Accurate Faster
¢) Query Dropping d) Resolution Interpolation e) Number of Windows

Figure 3: NAS Search Space. We vary (a) patch size, (b) number of decoder layers, (c) number of
queries, (d) image resolution, and (e) number of windows per attention block when evaluating dif-
ferent operating points along RF-DETR’s Pareto curve. In addition to training thousands of network
configurations in parallel, we find that this “architecture augmentation” serves as a regularizer and
improves generalization.

prototypes (Bolya et al., 2019). Motivated by LW-DETR’s observation that pre-training improves
DETRs, we pre-train RF-DETR-Seg on Objects-365 (Shao et al., 2019) psuedo-labeled with SAM2
(Ravi et al., 2024) instance masks.

End-to-End Neural Architecture Search. Our weight-sharing NAS evaluates thousands of model
configurations with different input image resolutions, patch sizes, window attention blocks, decoder
layers, and query tokens. At every training iteration, we uniformly sample a random model con-
figuration and perform a gradient update (Appendix A). This allows our model to efﬁciently train
thousands of sub-nets in parallel, similar to ensemble learning with dropout (Srivastava et al., 2014).
We find that this weight-sharing NAS approach also serves as a regularizer during tralnlng, effec-
tively performing “architecture augmentation”. To the best of our knowledge, RF-DETR is the first
end-to-end weight-sharing NAS applied to object detection and segmentation. We describe each
component below.

* Patch Size. Smaller patches lead to higher accuracy at greater computational cost. We
adopt a FlexiVIT-style (Beyer et al., 2023) transformation to interpolate between patch
sizes during training.

e Number of Decoder Layers. Similar to recent DETRs (Peng et al., 2024; Zhao et al., 2024),
we apply a regression loss to the output of all decoder layers during training. Therefore,
we can drop any (or all) decoder blocks during inference. Interestingly, removing the entire
decoder during inference effectively turns RF-DETR into a single-stage detector. Notably,
truncating the decoder also shrinks the size of the segmentation branch, allowing for greater
control over segmentation latency.

* Number of Query Tokens. Query tokens learn spatial priors for bounding box regression
and segmentation. We drop query tokens (ordered by the maximum sigmoid of the corre-
sponding class logit per token at the output of the encoder, see Appendix B) at test time to
vary the maximum number of detections and reduce inference latency. The Pareto optimal
number of query tokens implicitly encodes dataset statistics about the average number of
objects per image in a target dataset.

Published as a conference paper at ICLR 2026

* Image Resolution. Higher resolution improves small object detection performance, while
lower resolution improves runtime. We pre-allocate N positional embeddings correspond-
ing to the largest image resolution divided by the smallest patch size and interpolate these
embeddings for smaller resolutions or larger patch sizes.

* Number of Windows per Windowed Attention Block. Window attention restricts self-
attention to only process a fixed number of neighboring tokens. We can add or remove
windows per block to balance accuracy, global information mixing, and computational ef-
ficiency.

At inference time, we pick a specific model configuration to select an operating point on the
accuracy-latency Pareto curve. Importantly, different model configurations may have similar pa-
rameter counts but significantly different latencies. Similar to (), we see little benefit
from fine-tuning the NAS-mined models on COCO (Appendix G), but note modest improvements
from fine-tuning NAS-mined models on RF100-VL. This additional fine-tuning is optional, and is
often unnecessary for practical deployment. We posit that RF-DETR benefits from additional fine-
tuning on RF100-VL because the “architecture augmentation” regularization requires more than 100
epochs to converge on small datasets. Notably, prior weight-sharing NAS methods (,)
train in stages and use a different learning-rate scheduler per-stage. However, such schedulers make
strict assumptions about model convergence, which may not hold across diverse datasets.

Training Schedulers and Augmentations Bias Model Performance. State-of-the-art detectors
often require careful hyper-parameter tuning to maximize performance on standard benchmarks.
However, such bespoke training procedures implicitly bias the model towards certain dataset char-
acteristics (e.g. number of images). Concurrent with DINOv3 (,), we ob-
serve that cosine schedules assume a known (fixed) optimization horizon, which is impractical
for diverse target datasets like those in RF100-VL. Data augmentations introduce similar biases
by presuming prior knowledge of dataset properties. For example, prior work leverages aggres-
sive data augmentation (e.g., VerticalF1lip, RandomFlip, RandomResize, RandomCrop,
YOLOXHSVRandomAug, and CachedMixUp) to increase effective dataset size. However, cer-
tain augmentations like VerticalF1lip may negatively bias model predictions in safety-critical
domains. For example, a person detector in a self-driving vehicle should not be trained with
VerticalFlip to avoid false positive detections from reflections in puddles. Therefore, we limit
augmentations to horizontal flips and random crops. Lastly, LW-DETR applies a per-image random
resize augmentation, where each image is padded to match the largest image in the batch. As a
result, most images have significant padding, which introduces window artifacts, and wastes com-
putation on padded regions. In contrast, we resize images at the batch level to minimize the number
of padded pixels per-batch and to ensure that all positional encoding resolutions are equally likely
to be seen at train time.

4 EXPERIMENTS

We evaluate RF-DETR on COCO and RF100-VL and demonstrate that our approach achieves state-
of-the-art accuracy among all real-time methods. In addition, we identify inconsistencies in standard
benchmarking protocols and present a simple standardized procedure to improve reproducibility.
Following LW-DETR (,), we group models of similar latency into the same size
bucket rather than grouping based on parameter count.

Datasets and Metrics. We evaluate RF-DETR on COCO for fair comparison with prior work
and on RF100-VL to evaluate generalization to real-world datasets with significantly different data
distributions. Due to the diversity of RF100-VL’s 100 datasets, we posit that overall performance
on this benchmark is a proxy for transferability to any target domain. We use pycocotools to report
standard metrics like mean average precision (mAP) and provide breakdown analysis for APsg,
AP75, APsmail, AParedium, and APrq,g.. Further, we evaluate efficiency by measuring GFLOPs,
number of parameters, and inference latency on an NVIDIA T4 GPU with Tensor-RT 10.4 and
CUDA 12.4.

Standardizing Latency Benchmarking. Despite its maturity, benchmarking object detectors re-
mains inconsistent across prior work. For example, YOLO-based models often omit non-maximal
suppression (NMS) when computing latency, leading to unfair comparisons with end-to-end detec-

Published as a conference paper at ICLR 2026

Table 1: Standardizing Latency Evaluation. Variance in latency measurements can be largely
attributed to power throttling and GPU overheating. We mitigate this issue by buffering for 200ms
between forward passes. Notably, this benchmarking approach is not designed to measure sustained
throughput, but rather ensures reproducible latency measurements. We are unable to reproduce
YOLOV8 and YOLOvVI11’s mAP results in TensorRT, likely because these models evaluate with
multi-class NMS but only use single-class NMS in inference. We use the standard NMS-tuned con-
fidence threshold of 0.01. YOLOvV8 and YOLOvV11 performance degrades further when quantizied
from FP32 to FP16, reaffirming that all models should report latency and accuracy using the same
model artifact. Notably, naively quantizing D-FINE to FP16 reduces performance to 0.5 AP. We fix
this issue by changing the authors’ export code to use ONNX opset 17 (Appendix A).

Method Reported Buffering (FP-32) Buffering (FP-16)
AP50.95 Latency (ms) APs50.95 Latency (ms) AP50.95 Latency (ms)
YOLOV8 (M) 50.2 5.86 49.3 14.8 473 5.4
YOLOvI1 (M) 51.5 4.7 49.7 18.7 48.3 52
RT-DETR (R18) 49.0 4.61 49.0 12.2 49.0 4.4
LW-DETR (M) 52.5 5.6 52.6 26.8 52.6 4.4
D-FINE (M) 55.1 5.62 55.1 13.9 55.0 (0.5%) 5.4
RF-DETR (M) - - 54.8 20.5 54.7 4.4

Table 2: COCO Detection Evaluation. We compare RF-DETR with popular real-time and open-
vocabulary object detectors below. We find that RF-DETR (nano) outperforms D-FINE (nano) and
LW-DETR (tiny) by more than 5 AP. RF-DETR significantly outperforms YOLOv8 and YOLOv11,
while RF-DETR’s nano size achieves performance parity with YOLOv8 and YOLOv11’s medium
size model. We denote models that do not support TensorRT execution with a star, and instead report
PyTorch latency results. See Appendix E for L, XL, and Max variants of RF-DETR on COCO.

Model Size \ #Params. GFLOPS Latency (ms) \ AP AP;, AP;,; APs AP, AP,
Real-Time Object Detection w/ NMS
YOLOVS (,) [N [32M 8.7 2.1 [352 492 383 158 388 513
YOLOVII (R) | N[26eM 6.5 22 [37.1 516 404 173 407 556

[YOLOV8 (,) [S [112M 28.6 2.9 [424 576 460 222 471 59.6 |

[YOLOVII (20hH | S | 94M 215 32 [441 3593 479 261 485 626 |
YOLOVS (,) [M [259M 78.9 5.4 [473 625 515 275 529 651 |
YOLOVI1 (R) | M [201M 68.0 5.1 [483 636 525 291 538 663 |
Open-Vocabulary Object Detection (Fully-Supervised Fine-Tuning)
GroundingDINO (§ Y[T [173.0M 1008.3 427.6* [582
End-to-End Real-Time Object Detection
LW-DETR (R) T 12.IM 214 1.9 429 607 459 227 413 60.0
D-FINE (R) N 3.8M 7.3 2.1 4277 602 454 229 466 621
RF-DETR (Ours) N 30.5M 31.9 2.3 480 670 514 252 535 700
LW-DETR (R) S 14.6M 31.8 2.6 480 668 516 267 525 656
D-FINE (§) S 10.2M 25.2 3.5 506 676 550 32,6 546 66.6
RF-DETR (Ours) S 32.1IM 59.8 3.5 529 719 570 320 583 730
RT-DETR (,) R18 36.0M 100.0 44 49.0 666 533 328 521 650
LW-DETR (R) M 28.2M 83.9 44 526 720 566 325 576 705
D-FINE (,) M 19.2M 56.6 5.4 550 726 597 376 594 717
RF-DETR (Ours) M 33.M 78.8 4.4 547 735 592 361 597 738

[RF-DETR (Ours) [2XL | 1269M 4384 172 [601 785 655 432 649 762 |

tors. Additionally, YOLO-based segmentation models measure the latency of generating prototype
predictions instead of directly usable per-object masks (,), leading to biased run-
time measurements. Further, D-FINE’s reported latency evaluation of LW-DETR is 25% faster than
reported by (). We observe that such differences can be attributed to detectable
power throttling events, particularly when the GPU overheats (Table 1). In contrast, simply pausing
for 200ms between consecutive forward passes largely mitigates power throttling, yielding more sta-
ble latency measurements (Appendix K). Lastly, we find that prior work often reports latency using
FP16 quantized models, but evaluates accuracy with FP32 models. However, naive quantization can
significantly degrade performance (in some cases dropping performance to near 0 AP). To ensure
fair comparison, we advocate for reporting accuracy and latency with the same model artifact. We
release our stand-alone benchmarking tool on GitHub.

Evaluating RF-DETR and RF-DETR-Seg on COCO. COCO (,) is a flagship
benchmark for object detection and instance segmentation. In Table 2, we compare RF-DETR with
leading real-time and open-vocabulary detectors. RF-DETR (nano) beats both D-FINE (nano) and
LW-DETR (nano) by more than 5 AP. We see similar trends for small and medium sizes as well. No-

https://github.com/roboflow/single_artifact_benchmarking

Published as a conference paper at ICLR 2026

Table 3: COCO Instance Segmentation Evaluation. We compare RF-DETR with popular real-
time instance segmentation methods on COCO. Notably, RF-DETR (nano) outperforms all re-
ported YOLOvVS and YOLOvI11 model sizes. Further RF-DETR (nano) outperforms Fastlnst by
5.4%, while running nearly ten times faster. RF-DETR (medium) approaches the performance on
MaskDINO at a fraction of the runtime. We denote models that do not support TensorRT execution
with a star, and instead report PyTorch latency results. Our latencies for YOLOs also include the
conversion of protos into masks, which are not typically included in prior benchmarks but nonethe-
less contribute meaningfully to practical latency. See Appendix E for L, XL, and Max variants of
RF-DETR-Seg on COCO.

Model Size #Params. GFLOPS Latency (ms) [AP AP5y, AP;; APs APy APL
Real-Time Instance Segmentation w/ NMS
YOLOVS (R) | N [34M 12.6 35 [283 456 29.8 9.3 31.3 443
YOLOVII (R)| N | 29M 10.4 3.6 | 300 4738 31.5 100 334 477

[YOLOVS (R) | S [11.8M 42.6 42 [340 538 360 136 385 522 |

| YOLOvI1I (R)| S [10.1M 355 4.6 | 350 554 37.1 153 397 539 |
YOLOVS (R) [M [273M 110.2 7.0 [373 582 399 167 430 56.1
YOLOVIT (R)| M [224M 1233 6.9 [385 60.0 409 180 443 576
End-to-End Instance Segmentation
RF-DETR-Seg. (Ours) [N | 336M 50.0 34 [403 630 426 163 453 63.6

[RF-DETR-Seg. (Ours) [S] 337™M 70.6 4.4 [431 662 459 219 485 641 |
FastInst (R) R50 29.7M 99.7 39.6* 349 560 362 133 380 56.8
MaskDINO (R) R50 52.1IM 586 242% 463 69.0 507 26.1 493 66.1
RF-DETR-Seg. (Ours) M 35.7M 102.0 59 453 684 488 255 504 653

[RF-DETR (Ours) [2XL | 38.6M 4353 21.8 [499 731 545 339 541 657 |

tably, RF-DETR also significantly outperforms YOLOvS and YOLOv11. RF-DETR (nano) matches
the performance of YOLOv8 and YOLOvV11 (medium). We use mmdetection’s implementation of
GroundingDINO and include their reported AP since they do not release a model artifact for Ground-
ingDINO fine-tuned on COCO. We benchmark mmGroundingDINQO’s parameter count, GFLOPS,
and latency using the released open-vocabulary model. In Table 3, we compare RF-DETR-Seg
with real-time instance segmentation models. RF-DETR-Seg (nano) outperforms YOLOv8 and
YOLOVI11 at all sizes. Furthermore, RF-DETR-Seg (nano) beats FastInst by 5.4% while running
almost ten times faster. Similarly, RF-DETR (x-large) surpasses GroundingDINO (tiny), and RF-
DETR-Seg (large) outperforms MaskDINO (R50), at a fraction of their runtime.

Evaluating RF-DETR on RF100-VL. RF100-VL is a challenging detection benchmark composed
of 100 diverse datasets. We report latencies, FLOPs, and accuracy averaged over all 100 datasets in
Table 4. Our results show that RF-DETR (2x-large) outperforms GroundingDINO and LLMDet
while requiring only a fraction of their runtime. Interestingly, RT-DETR outperforms D-FINE
(which is built on RT-DETR) at APj5(, indicating that D-FINE’s hyperparameters are potentially
overfit to COCO. We also note that RF-DETR benefits from scaling to larger backbone sizes (Ap-
pendix E). In contrast, YOLOvVS and YOLOV11 consistently underperform DETR-based detectors,
and scaling these model families to larger sizes does not improve their performance on RF100-VL
(Figure 1).

Impact of Neural Architecture Search. We ablate the impact of weight-sharing NAS in Table
We find that adopting a gentler set of hyperparameters compared to LW-DETR (e.g. larger batch
size, lower learning rate, and replacing batch normalization with layer normalization) reduces per-
formance over LW-DETR by 1.0%. Notably, replacing batch normalization with layer normalization
hurts performance, but is necessary to train on consumer hardware. However, replacing LW-DETR’s
CAEv2 backbone with DINOv2 improves performance by 2%. The lower learning rate, in partic-
ular, helps preserve DINOv2’s pre-trained knowledge, while additional epochs of Objects-365 pre-
training further compensate for the slower optimization. Our final model with weight-sharing NAS
improves over LW-DETR by 2% without increasing latency.

Impact of Backbone Architecture and Pre-Training. We study the impact of different backbone
architectures in RF-DETR. We find that DINOv2 achieves the best performance, outperforming
CAEV2 by 2%. Interestingly, despite having fewer parameters than SigLIPv2, SAM2’s Hiera-S
backbone is considerably slower. This is in contrast with Hiera’s claim that it is meaningfully faster
than equivalently performant ViTs. However, Hiera does not explore latency in the context of Flash
Attention kernels, which are highly optimized in compilers such as TensorRT. Additionally, existing

Published as a conference paper at ICLR 2026

Table 4: RF100-VL Evaluation. We compare RF-DETR with real-time and open-vocabulary object
detectors on RF100-VL. Interestingly, RF-DETR (2x-large) outperforms GroundingDINO (tiny),
and LLMDet (tiny) at a fraction of their runtime. We report the average latency and FLOPs over
all 100 datasets. We note that YOLOvVS and YOLOv11’s latency measurements may be suboptimal
because the default tuned NMS threshold of 0.01 may not work well for all datasets in RF100-VL.
We denote models that do not support TensorRT execution with a star, and instead report PyTorch
latency results. See Appendix E for L, XL, and Max variants of RF-DETR on RF100-VL.

Model Size \ #Params. GFLOPS Latency (ms) \ AP AP;, AP;; APs AP, AP,
Real-Time Object Detectors w/ NMS
YOLOVS (,) [N[32™M 8.7 2.6 [55.0 8l 59.5 4.8 441 480
YOLOvVI1 (,) | N[26M 6.5 3.0 [555 813 603 4.7 444 492
[YOLOV8 (,) [S [112M 28.6 3.1 [563 820 609 6.1 456 486 |
| YOLOvII (R) | S 94aMm 21.5 33 | 564 825 613 6.5 455 485 |
YOLOVS (,) [M [259M 78.9 5.4 [565 823 609 6.4 457 48.6
YOLOVI1 (R) | M [201M 68.0 5.1 | 570 825 619 7.3 46.1 48.6
Open-Vocabulary Object-Detectors (Fully-Supervised Fine-Tuning)
GroundingDINO (,)] T [173.0M 1008.3 309.9* [623 888 678 392 5717 695
LLMDet (R) | T [173.0M 1008.3 308.4* [623 883 678 391 576 703
End-to-End Real-Time Object Detectors
LW-DETR (R) N 12.IM 21.4 1.9 57.1 847 615 312 51.8 658
D-FINE (,) N 3.8M 7.3 2.0 582 844 625 324 529 658
RF-DETR (Ours) N 31.2M 34.5 2.5 578 85.1 625 301 522 672
RF-DETR w/ Fine-Tuning (Ours) N 31.2M 34.5 2.5 586 857 630 31.0 532 676
LW-DETR (R) S 14.6M 31.8 2.6 574 850 620 321 521 658
D-FINE (, S 10.2M 25.2 35 603 853 654 366 560 684
RF-DETR (Ours) S 33.5M 62.4 377 609 875 66.1 342 557 69.6
RF-DETR w/ Fine-Tuning (Ours) S 33.5M 62.4 3.7 612 877 66.1 349 556 695
RT-DETR (,) M 36.0M 100.0 4.3 596 857 646 364 546 673
LW-DETR (,) M 28.2M 83.9 4.3 598 868 649 340 544 689
D-FINE (,) M 19.2M 56.6 5.6 60.6 855 658 360 566 675
RF-DETR (Ours) M 33.5M 86.7 4.6 617 830 669 358 565 700
RF-DETR w/ Fine-Tuning (Ours) M 33.5M 86.7 4.6 62.0 88.1 67.1 362 564 702
RF-DETR (Ours) 2XL 123.5M 410.2 15.6 633 839 690 387 582 716
RF-DETR (Ours) w/ Fine-Tuning | 2XL 123.5M 410.2 15.6 635 8.0 692 389 583 717

Table 5: Ablation on Neural Architecture Search. We ablate the impact of each “tunable knob”
on accuracy and latency below. Using a gentler set of hyperparameters compared to LW-DETR (e.g.
smaller batch size, lower learning rate, replacing batch norm with layer norm) reduces performance
by 1%. However, we regain this lost performance by replacing LW-DETR’s CAEV2 backbone with
DINOV2. Importantly, the lower learning rate and layer-norm allow us to better preserve DINOv2’s
foundational knowledge and allows us to train with larger batch sizes, making weight-sharing NAS
more effective. Counterintuitively, introducing weight sharing NAS to the training scheme improves
the performance of the base configuration even though patch size 14 isn’t in the NAS search space.

Model #Params. GFLOPS Latency (ms) AP AP;y AP;; APs APy AP,
LW-DETR (M) 28.2M 83.7 4.4 526 720 56.6 325 57.6 70.5
+ Gentler Hyperparameters 28.2M 83.7 4.4 51.6 71.1 55.5 31.7 56.4 69.4
+ DINOv2 Backbone 32.3M 78.2 4.7 536 727 58.0 343 58.3 72.4
+ Additional 0365 Pre-Training 32.3M 78.2 4.7 54.3 73.4 58.8 35.8 59.2 72.3
+ Weight Sharing NAS 32.3M 78.2 4.7 546 734 59.3 36.3 59.3 72.1
+ Patch Size 14 — 16, Res 560 — 640 32.3M 78.5 4.7 544 732 59.1 359 59.2 72.1
+ Image Resolution 640 — 576 322M 64.2 4.0 536 724 58.2 34.8 58.6 72.0
+ # Windows per Block 4 — 2 32.2M 63.7 4.3 543 733 58.8 35.6 59.4 73.2
+ # Decoder Layers 3 — 4 33.7M 64.8 4.4 546 735 59.1 36.0 59.8 73.7
+ # Query Tokens 300 — 300 33.7M 64.8 4.4 546 735 59.1 36.0 59.8 73.7

foundation model families typically do not release lightweight ViT variants such as ViT-S or ViT-T,
making it difficult to repurpose such models for real-time applications.

Rethinking Standard Accuracy Benchmarking Practices. Following prior work, we report all
COCO results on the validation set. However, relying solely on the validation for both model se-
lection and evaluation can lead to overfitting. For example, D-FINE (which builds on RT-DETR)
conducts an extensive hyperparameter sweep on COCO’s validation set and reports its best model.
However, evaluating this configuration on RF100-VL shows that D-FINE underperforms RT-DETR
on the test set. In contrast, our method achieves state-of-the-art performance among all real-time de-
tectors on both RF100-VL and COCO, demonstrating the robustness of our weight-sharing NAS. In

Published as a conference paper at ICLR 2026

Table 6: Ablation on Backbone. We ablate the impact of using different backbone architectures for
RF-DETR below. We find that DINOvV2 achieves the highest performance, outperforming CAEv2 by
2.4%. All models are pretrained with 60 epochs of Objects-365 and the “Gentler Hyperparameters”
setting. Note that SAM2 and SigLIPv2 perform poorly when evaluated in FP16. Therefore, we
report FP16 TensorRT latency with FP32 ONNX accuracy for these two models as an upper bound
on their performance if optimized for FP16.

LW-DETR (M) + Gentler Hyperparameters | # Params. GFLOPS Latency (ms) | AP AP;; AP;; APs AP, AP,
w/ CAEv2 ViT/S-16-Truncated Backbone 28.3M 83.7 4.4 523 714 563 323 564 70.0
w/ DINOv2 ViT/S-14 Backbone 32.3M 78.2 477 543 734 588 358 592 723
w/ SigLIPv2 ViT/B-32 Backbone* 105.1IM 81.6 4.8 504 704 537 280 553 73.0
w/ SAM?2 Hiera-S Backbone* 44.0M 109.1 11.2 53.6 724 579 333 583 71.0

addition to evaluating on COCO, we advocate that future detectors should also evaluate on datasets
with public validation and test splits like RF100-VL.

Limitations. Despite controlling for power throttling and GPU overheating during inference, our
latency measurements still have a variance of up to 0.1ms due to the non-deterministic behavior of
TensorRT during compilation. Specifically, TensorRT can introduce power throttling, which in turn
affects the resulting engine and leads to random fluctuations in latency. Although the measurement
of a given TensorRT engine is generally consistent, recompiling the same ONNX artifact can pro-
duce slightly different latency results. Therefore, we only report latencies with one digit of precision
after the decimal place.

5 CONCLUSION

In this paper, we introduce RF-DETR, a state-of-the-art NAS-based method for fine-tuning special-
ist end-to-end object detectors for diverse target datasets and hardware platforms. Our approach
outperforms prior state-of-the-art real-time methods on COCO and RF100-VL, improving upon D-
FINE (nano) by 5% AP on COCO. Moreover, we highlight that current architectures, learning rate
schedulers and augmentation schedulers are tailored to maximize performance on COCO, suggest-
ing that the community should benchmark models on diverse, large-scale datasets to prevent implicit
overfitting. Lastly, we highlight the high variance in latency benchmarking due to power throttling
and propose a standardized protocol to improve reproducibility.

ACKNOWLEDGEMENTS

This work was supported in part by compute provided by NVIDIA DGX. We’d like to thank Brad
Dwyer for reviewing early versions of our manuscript.

10

Published as a conference paper at ICLR 2026

REFERENCES

Lucas Beyer, Pavel Izmailov, Alexander Kolesnikov, Mathilde Caron, Simon Kornblith, Xiaohua
Zhai, Matthias Minderer, Michael Tschannen, Ibrahim Alabdulmohsin, and Filip Pavetic. Flex-
ivit: One model for all patch sizes. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 14496-14506, 2023.

Daniel Bolya, Chong Zhou, Fanyi Xiao, and Yong Jae Lee. Yolact: Real-time instance segmentation.
In Proceedings of the IEEE/CVF international conference on computer vision, pp. 9157-9166,
2019.

Han Cai, Tianyao Chen, Weinan Zhang, Yong Yu, and Jun Wang. Efficient architecture search
by network transformation. In Proceedings of the AAAI conference on artificial intelligence,
volume 32, 2018a.

Han Cai, Ligeng Zhu, and Song Han. Proxylessnas: Direct neural architecture search on target task
and hardware. arXiv preprint arXiv:1812.00332, 2018b.

Han Cai, Chuang Gan, Tianzhe Wang, Zhekai Zhang, and Song Han. Once-for-all: Train one
network and specialize it for efficient deployment. arXiv preprint arXiv:1908.09791, 2019.

Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander Kirillov, and
Sergey Zagoruyko. End-to-end object detection with transformers. In European conference on
computer vision, pp. 213-229. Springer, 2020.

Kai Chen, Jiangmiao Pang, Jiaqi Wang, Yu Xiong, Xiaoxiao Li, Shuyang Sun, Wansen Feng, Zi-
wei Liu, Jianping Shi, Wanli Ouyang, et al. Hybrid task cascade for instance segmentation. In
Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp. 4974—
4983, 2019.

Qiang Chen, Xiangbo Su, Xinyu Zhang, Jian Wang, Jiahui Chen, Yunpeng Shen, Chuchu Han,
Ziliang Chen, Weixiang Xu, Fanrong Li, et al. Lw-detr: A transformer replacement to yolo for
real-time detection. arXiv preprint arXiv:2406.03459, 2024a.

Qiang Chen, Xiangbo Su, Xinyu Zhang, Jian Wang, Jiahui Chen, Yunpeng Shen, Chuchu Han,
Ziliang Chen, Weixiang Xu, Fanrong Li, et al. Lw-detr: a transformer replacement to yolo for
real-time detection. arXiv preprint arXiv:2406.03459, 2024b.

Tianheng Cheng, Lin Song, Yixiao Ge, Wenyu Liu, Xinggang Wang, and Ying Shan. Yolo-world:
Real-time open-vocabulary object detection. In Proc. IEEE Conf. Computer Vision and Pattern
Recognition (CVPR), 2024.

M. Everingham, S. M. A. Eslami, L. Van Gool, C. K. I. Williams, J. Winn, and A. Zisserman. The
pascal visual object classes challenge: A retrospective. International Journal of Computer Vision,
111, 2015.

Pedro F Felzenszwalb, Ross B Girshick, David McAllester, and Deva Ramanan. Object detection
with discriminatively trained part-based models. IEEE transactions on pattern analysis and ma-
chine intelligence, 32(9):1627-1645, 2009.

Shenghao Fu, Qize Yang, Qijie Mo, Junkai Yan, Xihan Wei, Jingke Meng, Xiaohua Xie, and Wei-Shi
Zheng. Llmdet: Learning strong open-vocabulary object detectors under the supervision of large

language models. In Proceedings of the Computer Vision and Pattern Recognition Conference,
pp. 14987-14997, 2025.

Golnaz Ghiasi, Tsung-Yi Lin, and Quoc V Le. Nas-fpn: Learning scalable feature pyramid archi-
tecture for object detection. In Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, pp. 70367045, 2019.

Junjie He, Pengyu Li, Yifeng Geng, and Xuansong Xie. Fastinst: A simple query-based model for
real-time instance segmentation. In Proceedings of the IEEE/CVF conference on computer vision
and pattern recognition, pp. 23663-23672, 2023.

11

Published as a conference paper at ICLR 2026

Kaiming He, Georgia Gkioxari, Piotr Dollar, and Ross Girshick. Mask r-cnn. In Proceedings of the
IEEE international conference on computer vision, pp. 2961-2969, 2017.

Glenn Jocher, Jing Qiu, and Ayush Chaurasia. Ultralytics YOLO, January 2023. URL https:
//docs.ultralytics.com/models/yolov8.

Glenn Jocher, Jing Qiu, and Ayush Chaurasia. Ultralytics YOLO, January 2024. URL docs.
ultralytics.com/models/yololl.

Mehar Khurana, Neehar Peri, Deva Ramanan, and James Hays. Shelf-supervised multi-modal pre-
training for 3d object detection. arXiv preprint arXiv:2406.10115, 2024.

Feng Li, Hao Zhang, Huaizhe Xu, Shilong Liu, Lei Zhang, Lionel M Ni, and Heung-Yeung Shum.
Mask dino: Towards a unified transformer-based framework for object detection and segmenta-

tion. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition,
pp- 3041-3050, 2023.

Liunian Harold Li, Pengchuan Zhang, Haotian Zhang, Jianwei Yang, Chunyuan Li, Yiwu Zhong, Li-
juan Wang, Lu Yuan, Lei Zhang, Jenqg-Neng Hwang, et al. Grounded language-image pre-training.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
10965-10975, 2022.

Tsung-Yi Lin, Michael Maire, Serge J. Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr
Dollar, and C. Lawrence Zitnick. Microsoft COCO: common objects in context. In ECCV, 2014.

Shilong Liu, Feng Li, Hao Zhang, Xiao Yang, Xianbiao Qi, Hang Su, Jun Zhu, and Lei Zhang.
Dab-detr: Dynamic anchor boxes are better queries for detr. arXiv preprint arXiv:2201.12329,
2022.

Shilong Liu, Zhaoyang Zeng, Tianhe Ren, Feng Li, Hao Zhang, Jie Yang, Chunyuan Li, Jianwei
Yang, Hang Su, Jun Zhu, et al. Grounding dino: Marrying dino with grounded pre-training for
open-set object detection. arXiv preprint arXiv:2303.05499, 2023.

Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott Reed, Cheng-Yang Fu, and
Alexander C Berg. Ssd: Single shot multibox detector. In ECCV, 2016.

Yechi Ma, Neehar Peri, Shuoquan Wei, Wei Hua, Deva Ramanan, Yanan Li, and Shu Kong. Long-
tailed 3d detection via 2d late fusion. arXiv preprint arXiv:2312.10986, 2023.

Depu Meng, Xiaokang Chen, Zejia Fan, Gang Zeng, Houqiang Li, Yuhui Yuan, Lei Sun, and Jing-
dong Wang. Conditional detr for fast training convergence. In Proceedings of the IEEE/CVF
international conference on computer vision, pp. 3651-3660, 2021.

Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy Vo, Marc Szafraniec, Vasil Khalidov,
Pierre Fernandez, Daniel Haziza, Francisco Massa, Alaaeldin El-Nouby, et al. Dinov2: Learning
robust visual features without supervision. arXiv preprint arXiv:2304.07193, 2023.

Aljosa Osep, Tim Meinhardt, Francesco Ferroni, Neehar Peri, Deva Ramanan, and Laura Leal-Taixe.
Better call sal: Towards learning to segment anything in lidar. 2024.

Yansong Peng, Hebei Li, Peixi Wu, Yueyi Zhang, Xiaoyan Sun, and Feng Wu. D-fine: Redefine
regression task in detrs as fine-grained distribution refinement. arXiv preprint arXiv:2410.13842,
2024.

Neehar Peri, Achal Dave, Deva Ramanan, and Shu Kong. Towards long-tailed 3d detection. 2023.

Nikhila Ravi, Valentin Gabeur, Yuan-Ting Hu, Ronghang Hu, Chaitanya Ryali, Tengyu Ma, Haitham
Khedr, Roman Rédle, Chloe Rolland, Laura Gustafson, Eric Mintun, Junting Pan, Kalyan Va-
sudev Alwala, Nicolas Carion, Chao-Yuan Wu, Ross Girshick, Piotr Dollar, and Christoph Fe-
ichtenhofer. Sam 2: Segment anything in images and videos. arXiv preprint arXiv:2408.00714,
2024. URL https://arxiv.org/abs/2408.00714.

Esteban Real, Alok Aggarwal, Yanping Huang, and Quoc V Le. Regularized evolution for image
classifier architecture search. In Proceedings of the aaai conference on artificial intelligence,
volume 33, pp. 4780-4789, 2019.

12

https://docs.ultralytics.com/models/yolov8
https://docs.ultralytics.com/models/yolov8
docs.ultralytics.com/models/yolo11
docs.ultralytics.com/models/yolo11
https://arxiv.org/abs/2408.00714

Published as a conference paper at ICLR 2026

Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. You only look once: Unified,
real-time object detection. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 779-788, 2016.

Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn: Towards real-time object
detection with region proposal networks. In Advances in neural information processing systems,
2015.

Peter Robicheaux, Matvei Popov, Anish Madan, Isaac Robinson, Joseph Nelson, Deva Ramanan,
and Neehar Peri. Roboflow100-vl: A multi-domain object detection benchmark for vision-
language models. arXiv preprint arXiv:2505.20612, 2025.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng
Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al. Imagenet large scale visual
recognition challenge. International journal of computer vision, 115:211-252, 2015.

Shuai Shao, Zeming Li, Tianyuan Zhang, Chao Peng, Gang Yu, Xiangyu Zhang, Jing Li, and Jian
Sun. Objects365: A large-scale, high-quality dataset for object detection. In 2019 IEEE/CVF
International Conference on Computer Vision (ICCV), pp. 8429-8438,2019. doi: 10.1109/ICCV.
2019.00852.

Oriane Siméoni, Huy V Vo, Maximilian Seitzer, Federico Baldassarre, Maxime Oquab, Cijo Jose,
Vasil Khalidov, Marc Szafraniec, Seungeun Yi, Michaél Ramamonjisoa, et al. Dinov3. arXiv
preprint arXiv:2508.10104, 2025.

Nitish Srivastava, Geoffrey E. Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov.
Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res., 15(1):
1929-1958, 2014.

Ayca Takmaz, Cristiano Saltori, Neehar Peri, Tim Meinhardt, Riccardo de Lutio, Laura Leal-Taixe,
and Aljosa Osep. Towards Learning to Complete Anything in Lidar. In International Conference
on Machine Learning (ICML), 2025.

Mingxing Tan and Quoc Le. Efficientnet: Rethinking model scaling for convolutional neural net-
works. In International conference on machine learning, pp. 6105-6114. PMLR, 2019.

Mingxing Tan, Bo Chen, Ruoming Pang, Vijay Vasudevan, Mark Sandler, Andrew Howard, and
Quoc V Le. Mnasnet: Platform-aware neural architecture search for mobile. In Proceedings of
the IEEE/CVF conference on computer vision and pattern recognition, pp. 2820-2828, 2019.

Mingxing Tan, Ruoming Pang, and Quoc V Le. Efficientdet: Scalable and efficient object detection.
In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp.
10781-10790, 2020.

Chien-Yao Wang, Alexey Bochkovskiy, and Hong-Yuan Mark Liao. Yolov7: Trainable bag-of-
freebies sets new state-of-the-art for real-time object detectors. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pp. 7464-7475, 2023.

Chien-Yao Wang, I-Hau Yeh, and Hong-Yuan Mark Liao. Yolov9: Learning what you want to learn
using programmable gradient information. In European conference on computer vision, pp. 1-21.
Springer, 2024.

Bichen Wu, Xiaoliang Dai, Peizhao Zhang, Yanghan Wang, Fei Sun, Yiming Wu, Yuandong Tian,
Peter Vajda, Yangqing Jia, and Kurt Keutzer. Fbnet: Hardware-aware efficient convnet design
via differentiable neural architecture search. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pp. 10734-10742, 2019.

Yifan Xu, Mengdan Zhang, Chaoyou Fu, Peixian Chen, Xiaoshan Yang, Ke Li, and Changsheng Xu.
Multi-modal queried object detection in the wild. Advances in Neural Information Processing
Systems, 36, 2024.

Xiaoju Ye. calflops: a flops and params calculate tool for neural networks in pytorch framework,
2023. URL https://github.com/MrYxJ/calculate-flops.pytorch.

13

https://github.com/MrYxJ/calculate-flops.pytorch

Published as a conference paper at ICLR 2026

Hao Zhang, Feng Li, Shilong Liu, Lei Zhang, Hang Su, Jun Zhu, Lionel M Ni, and Heung-Yeung
Shum. Dino: Detr with improved denoising anchor boxes for end-to-end object detection. arXiv
preprint arXiv:2203.03605, 2022a.

Xinyu Zhang, Jiahui Chen, Junkun Yuan, Qiang Chen, Jian Wang, Xiaodi Wang, Shumin Han,
Xiaokang Chen, Jimin Pi, Kun Yao, et al. Cae v2: Context autoencoder with clip target. arXiv
preprint arXiv:2211.09799, 2022b.

Yian Zhao, Wenyu Lv, Shangliang Xu, Jinman Wei, Guanzhong Wang, Qingqing Dang, Yi Liu,
and Jie Chen. Detrs beat yolos on real-time object detection. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pp. 16965-16974, 2024.

Xingyi Zhou, Rohit Girdhar, Armand Joulin, Philipp Krihenbiihl, and Ishan Misra. Detecting
twenty-thousand classes using image-level supervision. In European Conference on Computer
Vision, pp. 350-368. Springer, 2022.

Xizhou Zhu, Weijie Su, Lewei Lu, Bin Li, Xiaogang Wang, and Jifeng Dai. Deformable detr:
Deformable transformers for end-to-end object detection. arXiv preprint arXiv:2010.04159, 2020.

Barret Zoph and Quoc V Le. Neural architecture search with reinforcement learning. arXiv preprint
arXiv:1611.01578, 2016.

Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V Le. Learning transferable architectures
for scalable image recognition. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pp. 8697-8710, 2018.

14

Published as a conference paper at ICLR 2026

A IMPLEMENTATION DETAILS

Training Hyperparamters. RF-DETR extends LW-DETR (,) for Neural Archi-
tecture Search. We highlight key differences in our training procedure below. First, we pseudo-label
Objects-365 (,) with SAM2 (,) to allow us to pre-train the segmenta-
tion and detection heads on the same data. We use a learning rate of 1e-4 (LW-DETR uses 4e-4), and
a batch size of 128 (LW-DETR uses the same). Similar to DINOv3 (,), we use
an EMA scheduler since this is necessary for EMA to function. However, unlike DINOv3, we omit
learning-rate warm-up. We clip all gradients greater than 0.1 and apply a per-layer multiplicative
decay of 0.8 to preserve information (especially the earlier layers) in the DINOv2 backbone. We
place our window attention blocks between layers {0, 1, 3, 4, 6, 7, 9, 10}, while LW-DETR places
their window attention blocks between layers {0, 1, 3, 6, 7, 9}. Although we have the same number
of windows, contiguous windowed blocks don’t require an additional reshape operation, making our
implementation slightly more efficient. Further, we train with more multi-scale resolutions (0.5 to
1.5 scale) than LW-DETR (0.7 to 1.4 scale) to ensure that the augmentation is symmetric around the
default scale. Notably, we add resolution as a “tunable knob” in our NAS search space, while LW-
DETR uses it as a form of data augmentation. Our model training and inference code is available on
GitHub.

Latency Evaluation. We ensure fair evaluation between models by measuring detection accuracy
and latency using the same artifact. To further standardize inference, we employ CUDA graphs
in TensorRT, which pre-queue all kernels rather than requiring the CPU to launch them serially
during execution. This optimization can accelerate some networks depending on the number and
type of kernels used by the model. We observe that RT-DETR, LW-DETR, and RF-DETR benefit
from this optimization. Further, CUDA graphs place LW-DETR on the same latency-accuracy curve
as D-FINE, since CUDA graphs speed up LW-DETR but do not benefit D-FINE. We release our
stand-alone latency benchmarking tool on GitHub.

Pareto-Optimal Model Configurations in COCO. We present the Pareto-Optimal RF-DETR and
RF-DETR-Seg configurations in Tables 7 and 8. We highlight notable trends about RF-DETR’s
Pareto-Optimal architectures in Appendix

Table 7: RF-DETR COCO Detection Model Config.

Model Size Resolution Patch Size Windows Decoder Layers Queries Backbone
N 384 16 2 2 300 DINOv2-S

S 512 16 2 3 300 DINOv2-S

M 576 16 2 4 300 DINOv2-S

L 704 16 2 4 300 DINOv2-S

XL 700 20 1 5 300 DINOv2-B
2XL 880 20 2 5 300 DINOv2-B
Max 828 12 1 6 300 DINOv2-B

Table 8: RF-DETR-Seg COCO Segmentation Model Config.

Model Size Resolution Patch Size Windows Decoder Layers Queries Backbone
N 312 12 1 4 100 DINOv2-S

S 384 12 2 4 100 DINOv2-S

M 432 12 2 5 200 DINOv2-S

L 504 12 2 5 300 DINOv2-S

XL 624 12 2 6 300 DINOvV2-S
2XL 768 12 2 6 300 DINOvV2-S
Max 890 10 1 6 300 DINOv2-S

Parameter Sampling Grid. Lastly, we present our sampling grid for training and inference below.
Importantly, we only drop decoder layers and queries during inference. We uniformly sample con-
figurations during training and perform grid search over all configurations during inference to find
Pareto-Optimal model configurations. RF-DETRs total training time is roughly two to four times as
long as a non-NAS baseline, depending on the target dataset. However, RF-DETR can generate all
size configurations from this single training run, while other non-NAS baselines must be re-trained
for each new model size. We evaluate 6,468 network configurations (11 resolutions * 7 patch sizes
* 7 decoder layers * 3 windows * 4 query settings) during architecture search. We estimate that this
search takes approximately 10,000 GPU Hours (200 T4 GPUs * 48 hours).

15

https://github.com/roboflow/rf-detr
https://github.com/roboflow/single_artifact_benchmarking

Published as a conference paper at ICLR 2026

Training Configurations

» Image Resolutions: 320, 384, 448, 512, 576, 640, 704, 768, 832, 896, 960
¢ Patch Sizes: 8, 10, 12, 16, 20, 24, 32

* Number of Decoder Layers: 6

e Number of Windows: 1, 2, 4

¢ Number of Queries: 300

Inference Configurations

* Image Resolutions: 320, 384, 448, 512, 576, 640, 704, 768, 832, 8§96, 960
e Patch Sizes: 8, 10, 12,14, 16, 20, 24, 32

e Number of Decoder Layers: 0, 1,2, 3,4,5,6

¢ Number of Windows: 1, 2, 4

¢ Number of Queries: 50, 100, 200, 300

B ABLATION ON QUERY TOKENS AND DECODER LAYERS

Latency and Accuracy While Varying Decoder Layers and Queries

2/
- /A\/
) v
|
_. 48 A,.LQ o o
Y [|
S 47 [
N
9 [J
< 46 Decoder layers
E 45 —— 0 decoder layers
= A
Q 1 decoder layers
§ 44 P Queries —— 2 decoder layers
g 43 [® 50 queries —— 3 decoder layers
B 100 queries —— 4 decoder layers
42 A 200 queries —— 5 decoder layers
€ 300 queries 6 decoder layers
41
2.0 2.2 2.4 2.6 2.8

Latency (ms)

Figure 4: Impact of Decoder Layers vs. Query Tokens. We evaluate the impact of inference-time
query dropping for trading-off accuracy and latency in RF-DETR (nano). Interestingly, we find that
dropping the 100 lowest confidence queries does not significantly reduce performance, but modestly
improves latency for all decoder layers.

We train RF-DETR (nano) with 300 object queries, following standard practices for real-time
DETR-based object detectors. However, many datasets contain fewer than 300 objects per im-
age. Therefore, processing all 300 queries can be computationally wasteful. LW-DETR (tiny)
demonstrates that training with fewer queries can improve the latency-accuracy tradeoff. Rather
than deciding on the optimal number of queries apriori, we find that we can drop queries at test
time without retraining by discarding the lowest-confidence queries ordered by the confidence of
the corresponding token at the output of the encoder. As shown in Figure 4, this yields meaningful
latency-accuracy tradeoffs. In addition, prior work (Zhao et al., 2024) demonstrates that decoder
layers can be pruned at test time, since each layer is supervised independently during training. We

16

Published as a conference paper at ICLR 2026

find that it is possible to remove all decoder layers, relying solely on the initial query proposals
from the two-stage DETR pipeline. In this case, there is no cross-attention to the encoder states
or self-attention between queries, leading to a substantial runtime reduction. The resulting model
resembles a single-stage YOLO-style architecture without NMS. Eliminating the final decoder layer
reduces latency by 10% with only a 2 mAP drop in performance.

C BENCHMARKING FLOPS

We benchmark FLOPs for RF-DETR, GroundingDINO, and LLMDet with PyTorch’s
FlopCounterMode. We find that FlopCounterMode closely reproduces FLOP counts ob-
tained with custom benchmarking tools for YOLOv11, D-FINE, and LW-DETR. In practice, we
also find that it provides more reliable results than CalFLOPs (Ye,). Notably, LW-DETR’s
FLOPs count is roughly twice that of the originally reported result (cf. Table 9). We posit that
this discrepancy can be attributed to LW-DETR reporting MACs instead of FLOPs. We rely on the
officially reported FLOPs counts from YOLOv11, YOLOVS, D-FINE, and RT-DETR.

Table 9: FLOPs Benchmarking Comparison. We compare FLOPs reported with custom bench-
marking tools, CalFLOPs, and PyTorch’s FlopCounterMode. Notably, we find that FlopCounter-
Model closely matches the results reported with custom benchmarking code, suggesting that it is
more reliable than prior generic benchmarking tools.

Model Size Reported CalFLOPs FlopCounterMode
D-FINE S 252 M 252 M 255M
LW-DETR S 16.6 M 229M 31.8 M
YOLOI1 S 21.5M 23.9M 21.6 M

D IMPACT OF CLASS-NAMES ON OPEN-VOCABULARY DETECTORS

We evaluate the impact of fine-tuning open-vocabulary detectors like GroundingDINO with class
names on RF100-VL in Table 10. Intuitively, GroundingDINO’s vision-language pre-training
should be more more useful when we prompt with class names (e.g. car, truck, bus) instead
of class indices (e.g. 0, 1, 2). Using class names when fine-tuning provides more information to
the VLM about the underlying data than is available to non-VLM detectors, potentially leading to
better downstream performance. However, we find that fine-tuning GroundingDINO on RF100-VL
yields nearly identical performance in both cases, suggesting that naively fine-tuning the end-to-end
model mitigates the benefits of open-vocabulary pre-training. Future work should investigate ways
of effectively fine-tuning VLMs to preserve foundational pre-training.

Table 10: Evaluating the Impact of Class Names. We evaluate the impact of using class-names
when fine-tuning VLMs like GroundingDINO. We find that class-names do not provide significant
benefit over prompting with class indices, suggesting that fine-tuning has diminished the impact of
internet-scale pre-training.

Model Size\# Params. GFLOPS Latency (ms)\ AP AP5y AP;5 APs AP, AP,
RF100-VL

GroundingDINO (S) w/ Standard Class Names| T [173.0M 1008.3 309.9 [62.3 888 67.8 39.2 57.7 69.5
GroundingDINO (s) w/ Class Index Names | T [173.0M 1008.3 309.9 625 882 68.3 40.0 584 703

E BENCHMARKING LARGER MODEL VARIANTS

Detectors like LW-DETR (s) and D-FINE (s) hand-design larger
variants to scale up a model family. In contrast, NAS-based architectures like RF-DETR automati-
cally discover scaling strategies through grid-based search. We analyze two families of RF-DETR
models derived from distinct scaling strategies: one based on a DINOv2-S backbone and another
based on a DINOv2-B backbone. To evaluate how well each family scales, we compare their NAS-
generated Pareto curves against those of D-FINE. Specifically, at each D-FINE size, we identify the
RF-DETR variant with the same backbone that maximizes performance at a comparable latency.
For example, when comparing to D-FINE (small), we select the RF-DETR model that offers the

17

https://github.com/pytorch/pytorch/blob/baee623691a38433d10843d5bb9bc0ef6a0feeef/torch/utils/flop_counter.py#L596

Published as a conference paper at ICLR 2026

Table 11: mAP@50:95 Gap of RF-DETR vs D-FINE at Similar Latencies We compare how
different RF-DETR model families scale relative to D-FINE. D-FINE (nano) is excluded since it
was not pretrained on Objects-365 and is therefore not expected to follow similar scaling trends. For
each RF-DETR backbone, we select the highest accuracy Pareto-optimal NAS-mined model with
latency up to that of the corresponding D-FINE variant. Notably, RF-DETR (DINOv2-B) achieves
better scalability than RF-DETR (DINOv2-S) and D-FINE. Note that none of the RF-DETR models

for COCO are finetuned.
Method (Backbone) S M L XL
D-FINE () 50.6 554 572 593
RE-DETR (DINOV2-S) 23 0.9 04 11
RF-DETR (DINOV2-B) 31 13 12 07

Table 12: COCO Detection Evaluation for Larger Model Variants. We present RF-DETR’s
performance for L, XL, and 2XL sizes on COCO below. Notably, D-FINE (x-large) outperforms
RF-DETR (x-large) on mAP 50:95. However, RF-DETR (2x-large) beats D-FINE by 0.8 AP, and is
the first real-time detector to surpass 60 AP on COCO.

Model Size | #Params. GFLOPS Latency (ms) [AP AP;, AP;; APs APy AP,
Real-Time Object Detection w/ NMS
YOLOVS (s) | L [47M 165.2 8.0 [495 647 540 302 551 685
YOLOVIT (R)| L [253M 86.9 6.5 [499 649 545 304 559 681
[YOLOV8 (s) | XL [682M 257.8 I1.3 [505 656 551 30.0 562 695 |
[YOLOvVII (R) | XL [569M 194.9 10.5 [50.9 66.1 554 315 566 687 |
End-to-End Real-Time Object Detection
RT-DETR (R) R50 42M 136 8.5 550 733 598 379 597 716
LW-DETR (,) L 46.8M 137.5 6.9 56.1 746 610 371 604 730
D-FINE (,) L 3IM 91 7.5 572 749 622 406 614 737
RF-DETR (Ours) L 33.9M 125.6 6.8 56.5 5.1 613 390 61.0 739
RT-DETR (s) R101 76M 259 12.0 56.1 745 61.1 381 604 734
LW-DETR (R) | XL 118.0M 342.5 13.0 583 769 633 402 633 747
D-FINE (s) XL 62M 202 11.5 593 768 646 421 642 763
RF-DETR (Ours) XL 126.4M 299.3 11.5 586 774 638 403 639 762
[RF-DETR (Ours) [2XL [126.9M 438.4 17.2 [60.1 785 655 432 649 762 |
[RF-DETR (Ours) [Max [132.4M 1742.5 98.0 [61.8 797 617 415 661 760 |

best accuracy without exceeding D-FINE (small)’s latency. Note that these RF-DETRmodels are
different than those reported in Tables 2 and

As shown in Table 11, the DINOv2-S backbone family initially surpasses D-FINE in mAP@50:95
but fails to maintain this advantage at larger model sizes, suggesting that its scaling strategy is less
effective than D-FINE’s manual design. In contrast, the DINOv2-B backbone family shows the
opposite trend, where the performance gap between D-FINE and RF-DETR narrows as latency in-
creases. This implies that at higher latencies, the DINOv2-B based RF-DETR models could surpass
D-FINE (and indeed RF-DETR (2x-large) outperforms D-FINE on mAP 50:95). Importantly, ex-
panding the D-FINE model family would require substantial additional engineering effort, whereas
extending the RF-DETR model family is straightforward; higher-latency variants can be sampled di-
rectly from the same NAS search without re-training. We present the COCO and RF100-VL results
of our larger variants in Tables 12, 13, and 14. We also include an RF-DETR Max variant on each
dataset to show our method’s maximum performance with latency less than 100ms, a scale other
model families don’t reach.

F PER-KNOB SENSITIVITY ANALYSIS

We evaluate the impact of varying resolution and patch size in Figure 5. Both curves follow a clear
Pareto frontier, and are consistent with findings from prior work like Flex1V1T (,
RF-DETR is able to gracefully interpolate between seen (blue circles) and unseen (red stars) conﬁg-
urations during inference. Importantly, unseen configurations closely track the trend established by
the seen configurations, demonstrating that RF-DETR generalizes beyond the model configurations
encountered during training.

18

Published as a conference paper at ICLR 2026

Table 13: COCO Segmentation Evaluation for Larger Model Variants. We present RF-DETR’s
performance for L, XL, and 2XL sizes on the COCO segmentation benchmark below. We find that
scaling up RF-DETR yields considerable performance improvements. In contrast, YOLOv8 and
YOLOvV11 do not significantly improve with scale.

Model Size \ #Params. GFLOPS Latency (ms) \ AP AP;y, AP;; APs APy, APp
Real-Time Instance Segmentation w/ NMS
YOLOVS (,) [L [46.0M 220.5 9.7 [39.0 605 417 180 447 578
YOLOvVII (s) ‘ L ‘ 27.6M 132.2 8.3 ‘ 395 615 42.1 18.6 455 59.4
[YOLOV8 (,) [XL [71.8M 344.1 14.0 [395 613 421 189 456 588 |
| YOLOvII (R) [XL | 62.IM 296.4 13.7 | 40.1 624 426 188 464 60.1 |
End-to-End Real-Time Instance Segmentation
RF-DETR (Ours) L 36.2M 151.1 8.8 471 705 509 284 521 656
RF-DETR (Ours) XL 38.IM 260.0 13.5 488 722 531 306 533 659
RF-DETR (Ours) 2XL 38.6M 4353 21.8 499 73.1 545 339 541 657
RF-DETR (Ours) Max 40.1IM 1668.2 95.6 505 740 554 346 542 654

Table 14: RF100-VL Detection Evaluation for Larger Model Variants. We present RF-DETR’s
performance for L, XL, and 2XL sizes on RF100-VL below. Notably, RF-DETR (x-large) beats
D-FINE by 0.5 AP. Fine-tuning RF-DETR (x-large) improves performance by an additional 0.4 AP.

Model Size \ #Params. GFLOPS Latency (ms) \ AP AP;, AP;; APs AP, AP,
Real-Time Object Detection w/ NMS
YOLOVS (,) [L [4™ 165.2 79 [565 821 61.1 7.1 46.0 489
YOLOvI1 (,) | L | 253M 86.9 6.4 [565 822 61.0 6.4 455 490
[YOLOV8 () [XL [682M 257.8 11.2 [565 823 61.0 6.6 457 479]
| YOLOvII () | XL [569M 194.9 10.3 [562 817 60.8 6.1 459 481 |
End-to-End Real-Time Object Detection
RT-DETR (s) R50 42M 136 8.4 61.7 877 669 381 57.1 694
LW-DETR (R) L 46.8M 137.5 6.8 615 874 670 371 564 69.0
D-FINE (s) L 3IM 91 7.5 61.6 86.4 672 378 56.5 70.1
RF-DETR (Ours) L 34.1M 119.1 6.2 62.0 88.1 673 369 571 702
RE-DETR (Ours) w/ Fine-Tuning L 34.1M 119.1 6.2 623 882 67.4 37.1 572 703
RT-DETR () R101 76M 259 11.9 61.0 874 662 366 563 682
LW-DETR () XL 118.0M 342.5 13.0 62.1 879 676 374 571 702
D-FINE () XL 59.3 76.8 114 622 869 680 376 574 69.7
RF-DETR (Ours) XL 35.0M 199.0 9.7 62.6 835 679 390 578 704
RF-DETR (Ours) w/ Fine-Tuning | XL 35.0M 199.0 9.7 63.0 887 682 388 582 70.6
[RF-DETR (Ours) [2XL [1235M 410.2 15.6 [633 889 690 387 582 716 |
‘ RF-DETR (Ours) w/ Fine-Tuning ‘ 2XL ‘ 123.5M 410.2 15.6 \ 63.5 89.0 69.2 389 58.3 T1.7 \

G

IMPACT OF NAS FINE-TUNING ON COCO

We find that fine-tuning after NAS provides limited benefit for COCO. We posit that the NAS “archi-
tecture augmentation” acts as a strong regularizer, and additional training without this regularization
leads to degraded performance. Specifically, when models are pre-trained with strong regularization,
removing the regularization during fine-tuning leads to overfitting. As shown in Tables
this trend is consistent across both detection and segmentation tasks. Interestingly, models trained
on RF100-VL benefit more from fine-tuning, likely because they require more than 100 epochs to

Varying Patch Size

Varying Resolution

and 16,

* Unseen
® Seen

3
Latency (ms)

6
Latency (ms)

Figure 5: Per Knob Sensitivity Analysis. Despite never seeing certain resolutions and patch sizes,
RF-DETR is able to gracefully interpolate to novel model configurations.

19

Published as a conference paper at ICLR 2026

converge. In such cases, we posit that reducing the total number of NAS configurations during
training, or training for more than 100 epochs with weight-sharing NAS can improve performance.

Table 15: COCO Detection Fine-Tuning Evaluation. We find that fine-tuning after NAS provides
limited benefit for COCO detection, particularly for larger model sizes.

Model Size | #Params. GFLOPS Latency (ms) | AP AP;, AP;; APs AP, AP,

End-to-End Real-Time Object Detectors

RF-DETR (Ours) ‘ N ‘ 30.5M 31.9 2.3 ‘ 480 67.0 514 252 535 70.0

RF-DETR (Ours) w/ Fine-Tuning ‘ N ‘ 30.5M 31.9 2.3 ‘ +0.4 +0.6 +0.3 +0.1 +0.1 +1.3
[RF-DEIR (Ours) [s [=M 59.3 35 [529 719 570 320 583 730 |
| RF-DETR (Ours) w/ Fine-Tuning [S | 32.IM 59.8 35 [0.1 +02 402 -02 +02 +0.1 |
‘ RF-DETR (Ours) ‘ M ‘ 33.7M 78.8 4.4 ‘ 547 735 59.2 36.1 59.7 73.8 ‘
[RF-DETR (Ours) w/ Fine-Tuning [M| 33.M 78.8 44 [400 +0.1 +0.0 -0.1 +0.1 0.1 |
‘ RF-DETR (Ours) ‘ L ‘ 33.9M 125.6 6.8 ‘ 56.5 75.1 61.3 39.0 610 739 ‘
‘ RFE-DETR (Ours) w/ Fine-Tuning ‘ L ‘ 33.9M 125.6 6.8 ‘ +0.0 +0.0 +0.0 -0.1 +0.1 +0.1 ‘
‘ RF-DETR (Ours) ‘ XL ‘ 126.4M 299.3 11.5 ‘ 58.6 774 63.8 403 63.9 762 ‘
‘ RFE-DETR (Ours) w/ Fine-Tuning ‘ XL ‘ 126.4M 299.3 11.5 ‘ +0.3 +0.1 +0.2 405 +04 +0.1 ‘
[RF-DEIR (Ours) [2XL | 1260M __ 4384 172 [601 785 655 432 GA9 762 |
| RF-DETR (Ours) w/ Fine-Tuning [2XL | 126.9M 438.4 172 [401 400 403 405 +02 +0.1 |

Table 16: COCO Segmentation Fine-Tuning Evaluation. We find that fine-tuning after NAS
provides limited benefit for COCO segmentation, particularly for larger model sizes.

End-to-End Real-Time Object Detectors

Model Size \ #Params. GFLOPS Latency (ms)\ AP AP;y, AP;; APs APy, APg

RF-DETR-Seg. (Ours) ‘ 33.6M 50.0 34 ‘ 40.3 63.0 42.6 16.3 453 63.6
RF-DETR-Seg. w/ Fine-Tuning (Ours) | 33.6M 50.0 3.4 [+01 +04 +00 -05 +0.2 +0.7
‘ RF-DETR-Seg. (Ours) ‘ 33.7M 70.6 4.4 ‘ 43.1 66.2 459 219 485 64.1 ‘
| RF-DETR w/ Fine-Tuning (Ours) Did Not Tmprove - - - - - -
‘ RF-DETR-Seg. (Ours) 35.7M 102.0 59 ‘

453 684 488 255 504 653

\
|
\
|
\
|
[362M 1511 88
|
\
|
\
\

N
N
S
S
M
M
L
L
XL
XL
2XL
2XL

|

\ \
| RF-DETR w/ Fine-Tuning (Ours) | Did Not Improve | |
[RF-DEIR (Ours) \ [4.1_ 705 509 0284 501 656 |
| RF-DETR (Ours) w/ Fine-Tuning ‘ Did Not Improve [- - - - - -]
[RF-DETR (Ours) [38.1IM 260.0 13.5 [488 722 531 306 533 659 |
| RF-DETR (Ours) w/ Fine-Tuning ‘ Did Not Improve [- - - - - -
‘ RF-DETR (Ours) ‘ 38.6M 435.3 21.8 ‘ 49.9 73.1 545 339 541 65.7 ‘
| RF-DETR (Ours) w/ Fine-Tuning | Did Not Improve | - -

H IMPACT OF DATASET CHARACTERISTICS ON TUNABLE KNOBS

We evaluate the impact of different dataset characteristics on optimal network configurations for
RF-DETR (medium) on RF100-VL in Table 17 and Figure 6. We compare different combinations
of object size, number of spatial locations, number of decoder layers, number of windows, number
of classes, number of annotations, objects per image, and number of queries below. We do not
expect these relationships to be linear, but expect that they will be monotonic (e.g. non-zero slope).
For example, we find strong correlations between the number of classes and number of decoder
layers, objects per image and number of queries, spatial locations and number of windows. Notably,
we do not find strong correlations between object size and number of decoder layers, number of
annotations and number of decoder layers, and objects per image and number of decoder layers

Table 17: Regression Analysis. We evaluate the linear relationships between various dataset charac-
teristics and model parameters. Although these correlations are non-linear, the line-of-best-fit helps
explain general trends. P-values indicate the significance of the correlation.

Relationship Slope Intercept R-squared P-value Std. Error
Average Object Size vs Number of Spatial Locations -0.009 0.384 0.148 0.000 0.002
Average Object Size vs Number of Decoder Layers -0.000 0.044 0.000 0.971 0.006
Average Object Size vs Number of Windows -0.008 0.065 0.019 0.170 0.006
Number of Classes vs Number of Decoder Layers 0.837 2.125 0.026 0.106 0.513

Number of Annotations vs Number of Decoder Layers [698.763 6654.795 0.001 0.706 1848.733
Average Objects per Image vs Number Decoder Layers| 0.163 7.618 0.000 0.857 0.904
Average Objects per Image vs Number of Queries 0.020 4.457 0.019 0.171 0.015
Number of Spatial Locations vs Number of Windows 1.722 32984 0.492 0.000 0.177

20

Published as a conference paper at ICLR 2026

Object Size vs Number of Spatial Locations

Object Size vs Number of Decoder Layers

o Moselm . o o mwommm
-2 BestrtLine 2. Bestrittine
04 04
& . g .
£o3 Lo3
3 * s *
H . k] .
g
oz . Sz .
g T . . . H . s
01 Smemenl ' 01 '
e s . i . i] .
. o I . 3 H H 3
° [T L3
00 s t 2y [00 . | H | '
% % B3 % B B3 E) ® T B 3 3 3 3
Spatial Locations (Resolution Patch Size) Number of Decoder Layers
Object Size vs Number of Windows Number of Classes vs Number of Decoder Layers
® RF-DETR (M) . » ® RF-DETR (M) . .
X Bestruine 2. estrruine .
»
04
& . 25
Lo3
o .
k- .
H
§ 02 .
H o
g o
o1 "
. [] |
ol I 1
o 15 2o 2 B 35 o 3 I
Number of Windows Number of Decoder Layers
Number of Annotations vs Number of Decoder Layers Average Objects per Image vs Number of Decoder Layers
200000
o o ReDEm M) . o REDETR(N)
-2 BestrtLine 2= Bestrittine
175000 70
150000 o0
§ 125000
2]
£ 100000]
5 g H
s 8 H
2 75000 . &30
5 g] .
E . 2 .
50000 . %2]
] .] b . .
.]
25000 o H . N
. v
3 i i i i i | i
o @ 3 i I i [e 3 |
T B 3 3 3 : 1 3 3 g 3 :
Number of Decoder Layers Namber o Decoder Layers
Average Objects per Image vs Number of Queries Spatial Locations vs Number of Windows
. o RFOETR (M) o] o wroemm o e
-2 BestritLine e
7 e
. PR e
o s e e
° e .
Eso P
z] . o .
£ a0
S o o . .
8 H
FEY
g]
1 .
20 .
.] .
*]
o L S S— »
g t ”””]
of 1] .
E) 100 250 %0 To pa) B B

150 2 25
Number of Queries Number of Windows

Figure 6: Impact of Dataset Characteristics on Tunable Knobs. We visualize the correlation
between key dataset characteristics and several tunable architectural knobs above. Across all sub-
plots, individual points represent different datasets within RF100-VL while dashed lines show cor-
responding linear trends. Overall, the results indicate that object-centric properties of datasets such
as average object size, number of classes, object density, and total annotations tend to have only
modest influence on architectural choices like the number of decoder layers, number of windows,
number of queries, and spatial resolution. Slight positive or negative trends appear in some cases
(e.g., more classes or more objects per image loosely correlating with deeper decoders or higher
query counts), but the scatter remains wide, suggesting no strong deterministic relationship. These
findings highlight that while dataset characteristics offer some intuition for selecting model hyper-
parameters, optimal configurations ultimately depend on a combination of factors rather than any
single dataset attribute.

21

Published as a conference paper at ICLR 2026

I IMPACT OF FIXED ARCHITECTURE ON RF100-VL

We evaluate the impact of transferring a NAS architecture optimized for COCO to RF100-VL in
Table and Figure 7. We find that these fixed architecture models perform remarkably well
without further dataset-specific NAS. Specifically, RF-DETR (large) model with a fixed architec-
ture achieves the best performance among all prior real-time models on COCO. However, dataset-
specific NAS yields significant improvements. Notably, the performance delta from LW-DETR to
the fixed architecture is comparable to the improvement from the fixed architecture to the NAS-
optimized model on the target dataset for nano, small, and medium scale models.

RF100-VL Object Detection

Figure 7: Ablating Fixed Architecture

” —— RF100-VL. We evaluate the benefit of dataset-
- e — specific NAS by transferring the COCO-

. v X optimized RF-DETR architecture to RF100-VL.
g ; / Although the fixed architecture was not tuned
Tz g for RE100-VL, it still outperforms LW-DETR.
g Running NAS directly on RF100-VL further
L improves performance over the fixed architec-
! ture. Additional fine-tuning provides consistent

w ! T Roemane " | gains across all model sizes, with particularly
' — twoerm e strong improvements for smaller models. This

2 4 6 8 o o e e is consistent with our observations on COCO

Latency (ms)

object detection.

Table 18: RF100-VL Fixed Architecture Evaluation. We evaluate the transfer of architectures
optimized for COCO to RF100-VL. Fixed architecture models perform well without additional
dataset-specific NAS, with the RF-DETR (large) model achieving the best performance among prior
real-time models. However, dataset-specific NAS provides significant further gains.

Model Size \ # Params. GFLOPS Latency (ms) AP AP;, AP;; APs AP, AP,
End-to-End Real-Time Object Detectors

RF-DETR (Ours) Fixed Architecture N 30.5M 31.9 2.3 57.7 85.0 619 30.8 51.5 674
RF-DETR (Ours) N 31.2M 34.5 2.5 57.8 85.1 625 30.1 522 672
RF-DETR w/ Fine-Tuning (Ours) N 31.2M 34.5 2.5 58.6 85.7 63.0 31.0 532 67.6
RF-DETR (Ours) Fixed Architecture S 32.1M 59.8 35 60.2 86.7 65.0 342 544 689
RF-DETR (Ours) S 33.5M 62.4 3.7 609 87.5 66.1 342 557 69.6
RF-DETR w/ Fine-Tuning (Ours) S 33.5M 62.4 3.7 612 87.7 66.1 349 556 69.5
RF-DETR (Ours) Fixed Architecture M 33.7M 78.8 4.4 61.2 87.4 664 358 56.1 69.8
RF-DETR (Ours) M 33.6M 91.0 4.6 61.7 88.0 669 358 56.5 70.0
RF-DETR w/ Fine-Tuning (Ours) M 33.6M 91.0 4.6 62.0 88.1 67.1 36.2 564 70.2
RF-DETR (Ours) w/ Fixed Architecture L 33.9M 125.6 6.8 622 882 67.8 37.7 57.0 70.5
RF-DETR (Ours) L 34.1M 119.1 6.2 62.0 83.1 67.3 369 57.1 70.2
RF-DETR (Ours) w/ Fine-Tuning L 34.1M 119.1 6.2 623 882 674 37.1 572 70.3
RF-DETR (Ours, DINOv2-Base) w/ Fixed Architecture| XL | 126.4M 299.3 11.5 629 88.5 68.6 37.0 575 71.3
RF-DETR (Ours) XL | 35.0M 199.0 9.7 62.6 88.5 679 39.0 57.8 704
RF-DETR (Ours) w/ Fine-Tuning XL | 35.0M 199.0 9.7 63.0 83.7 682 38.8 582 70.6
RF-DETR (Ours, DINOv2-Base) w/ Fixed Architecture | 2XL| 126.9M 438.4 17.1 63.2 89.0 69.3 384 584 715
RF-DETR (Ours, DINOv2-Base) 2XL| 123.5M 410.2 15.6 63.3 889 69.0 38.7 582 71.6
RF-DETR (Ours, DINOv2-Base) w/ Fine-Tuning 2XL| 123.5M 410.2 15.6 63.5 89.0 69.2 389 583 71.7

J ABLATION ON BACKBONE ARCHITECTURE WITH RF20-VL

In Table 19, we reproduce our ablation on the impact of backbone architecture on downstream model
performance (Table 6) on RF20-VL. All trends from the main paper hold.

Table 19: Ablation on Backbone RF20-VL

LW-DETR (M) + Gentler Hyperparameters | # Params. GFLOPS Latency (ms) AP;y AP;; APs AP, APp
w/ CAEv2 ViT/S-16-Truncated Backbone 28.3M 83.7 43 64.4 922 712 338 568 719
w/ DINOv2 ViT/S-14 Backbone 32.3M 78.2 4.6 652 925 728 378 582 726
w/ SigLIPv2 ViT/B-32 Backbone* 105.1M 81.6 4.5 622 910 678 289 541 703
w/ SAM2 Hiera-S Backbone* 44.0M 109.1 11.2 652 925 727 378 582 721

22

Published as a conference paper at ICLR 2026

K ANALYSIS ON BUFFERING

We further analyze the impact of buffering on the relative ordering of inference speed in Table
Notably, we find that buffering beyond 200ms does not change latency measurements. However,
we acknowledge that adding a 200ms buffer after every forward pass considerably increases overall
inference time. Future work should consider alternatives to buffering to address power throttling.

Table 20: Analysis on Buffering. We evaluate models with different amounts of buffering between
consecutive forward passes. We find that buffering beyond 200ms does not provide any additional
stability to latency measurements.

Model mAP 0 ms 200 ms 400 ms 800 ms
YOLOvV8 (M) 473 5.5 ms 5.4 ms 5.4 ms 5.4 ms
YOLOvI1 (M) 48.4 5.0 ms 5.0 ms 5.1 ms 5.1 ms
RT-DETR (R18) 49.0 4.4 ms 4.4 ms 4.4 ms 4.4 ms
LW-DETR (M) 52.6 4.5 ms 4.3 ms 4.3 ms 4.3 ms
D-FINE (M) 54.9 5.7 ms 5.4 ms 5.4 ms 5.4 ms
RF-DETR (M) 54.7 4.7 ms 4.4 ms 4.4 ms 4.4 ms

L DISCUSSION ON NOTABLE DISCOVERED ARCHITECTURES

Several trends emerge from our weight-sharing NAS. First, we note that all tunable “knobs” are
used when defining Pareto-optimal model families, validating our search space. This suggests that
expanding the search space may further improve downstream performance.

Across Pareto-optimal models, patch size is consistent within model families. For example, the
optimal patch size for RF-DETRs with a DINOv2-S backbone is 16, RF-DETRs with a DINOv2-B
backbone is 20, and RF-DETR-Segs with a DINOv2-S backbone is 12. Pareto-optimal models also
jointly scale encoder and decoder compute: patch size, number of windows, and resolution impact
the encoder, while decoder depth, and number of queries affect the decoder. For RF-DETR-Seg,
scaling resolution impacts the segmentation head. We find that using 2 windows in the encoder is
typically optimal and resolution scales within a model family as we increase latency. On COCO,
RF-DETR scales decoder depth while keeping the number of queries fixed, while RF-DETR-Seg
simultaneously scales both axes. This likely reflects a minimum viable segmentation head depth; to
offset its latency, RF-DETR-Seg reduces its total number of queries, yielding a thin, deep decoder,
in contrast to RF-DETRs wide, shallow decoder.

Next, we find that RF-DETR’s performance is more correlated with the total number of spatial
locations (e.g. resolution divided by patch size) rather than resolution or patch size alone. Scaling
resolution with a fixed patch size yields similar results to scaling patch size with a fixed resolution,
since vision transformers are agnostic to absolute input resolution after the patchify-and-project
operation. To verify this, we constructed an alternative model family with fixed resolution (640)
and varied patch sizes to preserve the total number of spatial locations. Specifically, we evaluate
RF-DETR (nano) with a patch size of 27, RF-DETR (small) with a patch size of 21, and RF-DETR
(medium) with a patch size of 18. Surprisingly, all model results are nearly identical to the Pareto-
optimal family. Notably, patch sizes of 27 and 18 were unseen during training, demonstrating RF-
DETR’s strong generalization to novel patch sizes (,). However, we find that
this trend does not hold for RF-DETR-Seg because segmentation features are always upsampled
to % of the input image resolution. As a result, scaling RF-DETR-Seg’s input resolution affects
both the number of spatial locations and the segmentation feature resolution. Specifically, RF-
DETR-Seg (nano, small, medium) uses input resolutions of 312, 384, and 432 with patch size 12,
yielding segmentation feature resolutions of 78, 96, and 108 and 26, 32, and 36 spatial locations,
respectively. In contrast, increasing patch size alone (e.g., patch size 16 at input resolution 576)
preserves spatial locations while increasing segmentation feature resolution. As a result, although
RF-DETR (medium) and RF-DETR-Seg (medium) both use 36 spatial locations, RF-DETR-Seg
operates at lower input resolution, demonstrating that coupling segmentation feature resolution with
input resolution shifts the Pareto-optimal operating point.

Further, we find that most Pareto-optimal RF-DETR models perform best with 2 windows, whereas
LW-DETR achieves the best performance with 4 windows. We attribute this difference to how each
architecture handles class tokens. LW-DETRs CAEv2 backbone omits the class token, while RF-

23

Published as a conference paper at ICLR 2026

DETR’s DINOV2 backbone relies on it as a key part of pre-training. To make windowed attention
compatible with class tokens, we duplicate the class token for each window. During global attention,
window-level class tokens attend to one another, while all other tokens attend to all class tokens. In
practice, RF-DETR (nano), RF-DETR (small), and RF-DETR (medium) all use 2 windows, since
duplicating class tokens for additional windows reduces runtime efficiency. As a result, unlike LW-
DETR, RF-DETR does not benefit from scaling to 4 windows.

Lastly, we note that dataset characteristics influence optimal discovered architectures. We find that
the optimal low latency models on RF100-VL tend to use fewer queries than the COCO models
of equivalent latency. We attribute this to RF100-VL datasets having fewer objects per image than
COCO.

M VISUALIZING MODEL PREDICTIONS

We visualize model predictions from RF-DETR (nano) and relevant detection and segmentation
baselines in Figure 8. We find that RF-DETR (nano) predicts fewer false positives (e.g. mistaking
sign post for person). Similarly, RF-DETR-Seg. (nano) predicts more precise object bound-
aries.

RF-DETR (nano) LW-DETR (tiny) RF-DETR-Seg (nano) YOLOVI11 (nano)

Figure 8: Visualizing Model Predictions. On the left, we compare detections from RF-DETR
(nano) and LW-DETR (tiny). On the right, we compare instance segmentation masks from RF-
DETR-Seg (nano) and YOLOv11 (nano)

24

	Introduction
	Related Works
	RF-DETR: Weight-Sharing NAS With Foundation Models
	Experiments
	Conclusion
	Implementation Details
	Ablation on Query Tokens and Decoder Layers
	Benchmarking FLOPs
	Impact of Class-Names on Open-Vocabulary Detectors
	Benchmarking Larger Model Variants
	Per-Knob Sensitivity Analysis
	Impact of NAS Fine-Tuning on COCO
	Impact of Dataset Characteristics on Tunable Knobs
	Impact of Fixed Architecture on RF100-VL
	Ablation on Backbone Architecture with RF20-VL
	Analysis on Buffering
	Discussion on Notable Discovered Architectures
	Visualizing Model Predictions

