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Figure 1: (a) Existing 3D LiDAR detectors struggle to detect far away objects (e.g., 300m) due to time and compute
constraints. (b) We explore two ways to reduce compute: adopt a coarser grid and limit the processing range. Somewhat
surprisingly, we find that range is the single most effective “knob” for trading off accuracy-vs-latency, implying that detectors
should “give up” on far-field detection to manage compute budgets. Moreoever, we find that near-range detectors can exploit
finer voxel sizes for higher resolution processing, while far-range detectors benefit from larger voxels. We denote models
optimized for specific ranges as range experts. (c) To avoid blindly giving on far-field objects, we simply combine range
experts by ensembling; e.g., combine 0-50m detections from the 50m expert with 50-100m detections from the 100m expert.
Despite improved performance, the runtime of this naive range ensemble increases linearly with the number of range experts.
To address this, we introduce near-far range-ensembles, which take inspiration from hierarchical controllers to run near-field
detectors (for near-term collision avoidance) at a higher rate than far-field detectors (for long-horizon planning).

Abstract

LiDAR-based 3D detection plays a vital role in au-
tonomous navigation. Surprisingly, although autonomous
vehicles (AVs) must detect both near-field objects (for colli-
sion avoidance) and far-field objects (for longer-term plan-
ning), contemporary benchmarks focus only on near-field
3D detection. However, AVs must detect far-field objects
for safe navigation. In this paper, we present an empirical
analysis of far-field 3D detection using the long-range de-
tection dataset Argoverse 2.0 to better understand the prob-
lem, and share the following insight: near-field LiDAR mea-
surements are dense and optimally encoded by small voxels,
while far-field measurements are sparse and are better en-
coded with large voxels. We exploit this observation to build
a collection of range experts tuned for near-vs-far field de-
tection, and propose simple techniques to efficiently ensem-
ble models for long-range detection that improve efficiency
by 33% and boost accuracy by 3.2% CDS.

1. Introduction

3D object detection is a critical component of the au-
tonomy stack. Despite the maturity of methods in exist-
ing literature, most treat detection range as a constant in-
stead of an adjustable hyperparameter [35, 16, 36], likely
because existing benchmarks primarily evaluate near-field
detections. Motivated by highway driving and long-horizon
planning, we present an empirical analysis of far-range per-
ception and share insights that are widely applicable across
model architectures. Contemporary solutions for near-field
3D detection make use of 3D voxel representations, often
encoded with a bird’s-eye view (BEV) feature map. While
quite intuitive, such representations scale quadratically with
the spatial range of the map. We find that a primary chal-
lenge for effectively addressing long-range 3D detection is
managing compute and latency demands.

Accuracy-vs-Latency. In this paper, we study different
factors for trading off compute-vs-latency, like voxel reso-
lution and detection range, in the context of bird’s-eye view
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Figure 2: Near-Far Ensemble. We can achieve considerable efficiency gains by processing different range experts asyn-
chronously at different frequencies. Importantly, near-field detectors need to be processed more frequently than far field de-
tectors for autonomous navigation. We run the high resolution near-field model at every timestamp and process the medium
and long-range models at lower frequencies. To estimate object locations for frames without far-field processing, we forecast
previous detections using a constant velocity model. By simply running far-field detectors less often, we achieve a 33%
increase in efficiency over the naive range ensemble.

(BEV) based 3D detection. BEV-based detectors operate on
a dense 2D BEV feature map whose spatial dimensions are
directly determined by the processing range and the voxel
size (grid density). Interestingly, the existing literature on
2D detection has converged on image resolution and back-
bone depth as the handy “knobs” for trading off accuracy-
vs-latency [29, 17, 32]. We revisit these questions in the
context of 3D detection, and find somewhat surprisingly
that range is an even more effective parameter for trading
off these quantities (c.f. Fig. 1). For example, we show
that even if the sensor (dataset) includes object annotations
up to 150m, optimal accuracy-vs-latency tradeoffs may be
achieved by artificially limiting the range of the model to
100m, essentially “giving up” on far-field detections dur-
ing training. We posit that this is due to the distribution of
annotations (e.g. fewer objects are labeled in the far-field).

Range Ensemble. One interesting by-product of giving-
up on the far-field is that the additional compute can be re-
allocated to the near-field via smaller (higher resolution)
voxels. Our analysis reveals that bird’s-eye view (BEV)
representations can be tuned for particular ranges by ad-
justing other hyperparameters such as voxel resolution. We
denote models optimized for specific ranges as range ex-
perts. Ultimately, we would like to avoid giving up on the
far-field as it is important for highway driving and long-
horizon planning. To avoid doing so, we simply combine
range experts by ensembling; e.g., combine 0-50m detec-

tions from the 50m expert with 50-100m detections from
the 100m expert. We find such an ensemble greatly boosts
detection accuracy. Perhaps unsurprisingly, such an archi-
tecture is performant because it exploits a well-known but
under-emphasized property of LiDAR: farther range im-
plies greater sparsity.

LiDAR Sparsity. Interestingly, prior work [37, 25, 14]
has exploited sparsity in the context of spherical voxeliza-
tion or range-view processing. While performant for tasks
such as semantic segmentation [40], most SOTA architec-
tures for 3D cuboid detection still make use of rectilinear
voxel grids. One reason may be that spherical warping in-
troduces perspective distortions that warp far-field objects,
making it difficult to explicitly tune range. In contrast, our
range ensemble can be seen as a rectilinear approximation
of spherical voxelization that avoids voxel distortion. More-
over, due to the popularity of rectilinear detectors, there
exist more mature methods for data augmentation [9] and
temporal fusion, either at the sensor level [35, 16, 36, 22]
or at the feature level [19, 13], which is essential for long-
range detection. Due to the strong empirical performance
of 3D BEV detectors [36, 39, 18, 1], we argue that improv-
ing their range-efficiency will be increasingly important as
LiDAR sensors themselves increase in range and density.

Near-Far Ensembles. Finally, we demonstrate that one
can trivially speed up a multi-range ensemble via range-
specific asynchronous processing. We take inspiration from



hierarchical “slow-fast” planners that run a low-frequency
planner together with a high-frequency reactive controller.
From a perception perspective, autonomous agents need to
quickly react to near-field objects (that represent potential
collisions), while far-field objects may be used for more
strategic long-term planning. Concretely, we run near-range
experts at high frequency and run far-range experts at a
lower frequency (Fig. 2) Our results highlight an interest-
ing observation: sometimes it is more effective to forecast
the location of a far-field object from a previous frame’s de-
tection than to directly process the far-field of the current
frame. One reason is that the object may have appeared in
the near-field of the previous frame, making it far easier to
detect. We find that near-far ensembles reduce runtime by
33% with little performance decrease.

We summarize our contributions as follows:

1. We study the impact of range as a tunable parame-
ter for 3D object detection. We draw analogy to im-
age resolution and find the surprising conclusion that
the best solution to optimize the accuracy-vs-latency
tradeoff is to ”give up” on far-field detection.

2. We study how detectors can generalize across ranges
(e.g. train on 50m, but deploy at 100m) due to fully
convolutional processing. We find that certain archi-
tectural design choices, such as voxel encoding and
detector head design greatly impact across-range gen-
eralization.

3. We present a simple extension of range ensembles that
takes inspiration from hierarchical controllers by run-
ning near-field detectors at higher frequency and far-
field detectors at lower frequency. We show improved
efficiency over the naive range-ensemble, reducing la-
tency by 33%!

2. Related Work
3D detection models can be roughly categorized as:

bird’s-eye view, voxel-grid, point, graph, and range-view
representation models. Unlike 2D images, point clouds
are amenable to a number of different representations, each
with distinct advantages and disadvantages, particularly in
the context of long-range detection.

Bird’s-eye view Representations. 3D perception us-
ing 2D convolutions enables fast, efficient feature aggre-
gation due to mature, highly optimized kernels available
in open-source libraries. However, these methods must be
carefully designed to encode geometric information in the
height dimension. PointPillars [16] represents a point cloud
as a “pseudo-image”, applying a PointNet [23] encoding
to a set of sparse pillars in the BEV. MV3D [6] explores
a multi-sensor fusion model which consists of a bird’s-eye
and range view of LiDAR sensor data, and RGB imagery.

However, ego-centric point clouds are not dense in the BEV,
which consequently wastes both memory and computation.
Specialized sparse operators may address the issues of den-
sity, but are often not as well-tuned as 2D convolutions for
GPU-based computation. Further, we find that different im-
plementations of sparse convolutions can have a significant
impact on latency.

Voxel-grid Representations. 3D convolution provides
rich, expressive geometric features at the cost of a cubic
run-time w.r.t. the quantized grid dimensions leading to
considerable compute challenges. VoxelNet [38] introduced
the first end-to-end learning approach for 3D object detec-
tion by augmenting point features with positional encodings
within a voxel-grid. SECOND [35] exploits the sparsity of
a point cloud through 3D sparse convolutions, greatly im-
proving run-time to speeds suitable for real-time applica-
tions. [30] combines voxel and point level processing to ex-
ploit the efficiency of a regular grid and the geometric rich-
ness of point-level features. Similar to our work, [37, 40]
emphasize that point clouds are sparse at range, leading to
an imbalanced spatial distribution of points. Prior works ad-
dress this observation by representing point clouds with po-
lar and cylindrical representations, respectively. However,
this can lead to spatial distortions that break the translation
equivariance assumed by convolutional filters. Prior work
also explores multi-resolution voxel-based approaches. [11]
proposes a density-aware RoI grid pooling module using
kernel density estimation and self-attention with point den-
sity positional encoding to efficiently voxelize and encode
LiDAR points. [15] proposes a bottom-up multi-scale voxel
encoder and a top-down multi-scale feature map aggregator.

Graph Representations. Graph representations of point
clouds encode dynamic neighborhoods between points
while also permitting a sparse representation in the form
of a sparse matrix or adjacency list. PointNet++ [24] en-
codes a point cloud as a hierarchical set of point-feature ab-
stractions for 3D object classification. [33] introduces the
EdgeConv operator which directly aggregates edge features
of point clouds while maintaining permutation invariance.
Point-RCNN [26] operates directly on point clouds without
voxelization, using point-wise feature vectors for bottom
up proposal generation. [12] proposes using random sam-
pling to process large point clouds. Graph representations
oftentimes require costly neighborhood computation using
k-nearest or fixed-radius nearest neighbors. Despite their
flexible representation, 3D detection models on state-of-
the-art leaderboards are still dominated by voxel-grid and
BEV based methods [2, 27].

Range-view Representations. Range-view refers to the
projection of an unordered set of three-dimensional coordi-
nates onto a two-dimensional grid which represents the dis-
tance from a visible point to the sensor. Unlike voxel-grid
or graph representations, range-view is not information-



preserving for 3D data, i.e., each sensor return must have
a clear line-of-sight between itself and the vantage point.
LaserNet [20] combines a range-view representation with
probabilistic cuboid encoding for 3D detection. [4] explores
applying different kernels to the range-view image to coun-
teract perspective distortions and large depth gradients w.r.t.
to inclination and azimuth. [28] construct a two-stage ap-
proach, first performing foreground segmentation in range-
view and applying sparse convolutions on the remaining
points. However, much like speherical voxelization, range
view suffers from perspective distortions and far-away ob-
jects have a smaller footprint in a range image.

3. Approach
In this section, we propose several approaches for effec-

tively tuning range-experts (Sec. 3.1), efficiently construct-
ing range-ensembles (Sec 3.2), and further optimizing en-
semble runtime with near-far networks (Sec 3.3).

3.1. Range Experts

Detection range is largely considered as a constant in the
literature. However, properly tuning the detection range
together with voxel size can yield a better performance-
latency trade off. We derive model-families by tuning
the range parameter and evaluate the accuracy and latency
across different range intervals. Since the baseline detector
is fully-convolutional (as are many other detectors), we can
run inference at a different range from training. Taking this
into consideration, we introduce a new notation of r1/s →
r2, where r1 represents the range the model is trained at, s
represents the reciprocal of the voxel size and r2 represents
the inference range. Note that the voxel size must remain
the same during training and testing.

Train-Time Range Masking. In order to maximize the
performance of a far-field range expert, one may naturally
assume that allocating model capacity to near-field regions
of the LiDAR sweep may negatively impact model perfor-
mance. Concretely, when training a 100m range expert to
detect objects between 50-100m, it seems wasteful to spend
processing time on the 0-50m region of the point cloud. In
particular, the point density for near-field regions are signif-
icantly higher than far-field regions. Additionally, more ob-
jects are annotated in the near-field, so we expect that this
distributions shift will negatively affect generalization. In
fact, the standard practice already crops out too-far regions
for each model (by simply limiting their max range). To
address this concern, we train range experts with a masked
out “donut hole” (c.f. Fig. 3) to remove LiDAR points and
ground truth annotations outside of the region of interest.
Somewhat surprisingly, we find that this “donut hole” range
masking during training time hurts performance. In prac-
tice, it seems that learning to detect near-field cars helps to
detect far-field cars.

(a) (b)

Figure 3: Range Masking. We evaluate the effectiveness
of range masking when training and evaluating range ex-
perts. We find that (a) range masking negatively impacts
performance during training. Surprisingly, learning to de-
tect near-range cars improves the detection of far-field cars.
However, (b) range masking reduces latency during infer-
ence as the additional sparsity increases the efficiency of
sparse voxel encoders.

Test-Time Range Masking. Although we find that
“donut hole” range masking hurts performance during train-
ing, we find that only applying it during test-time does not
affect detection accuracy (c.f. Fig 3). In fact, it provides a
modest speedup because it makes better use of sparse com-
putation. Note that this speedup is largely dependent on
the sparse voxelization encoder. We find that this provides
considerable improvement for models using spconv 1.0, but
limited improvement for models using spconv 2.0.

Up-sampling Far-Field Objects. One reason that near-
field detections may help improve far-field detections is be-
cause there are simply too few objects annotated in the far
field. Taking inspiration from long-tailed detection litera-
ture [39, 21], we can upsample LiDAR sweeps with more
far-field ground truth objects and paste more examples of
far-field objects into each sweep. However, we find that
this does even worse than range masking at training time.
We posit that the distribution of objects seen during training
time is considerably different than that see during inference,
leading to a significant performance drop.

3.2. Range Ensembles

After training each range-expert, we can ensemble their
detections by combining predictions from the respective ex-
pert models. One strategy is to pool all detections together
and perform non-maximal suppression to remove duplicate
detections across range experts. However, we find that this
approach introduces more false positives and negatively im-
pacts overall performance. Instead, we run each range ex-
pert as normal, but simply post-process detections from
each range expert such that they only contribute to detect-



ing objects within their tuned range. However, this wastes a
considerable amount of compute. Specifically, we must still
run our 100m range expert on the dense 0-50m regions of
the point cloud, despite discarding these predictions during
post processing. Instead, we opt to exploit sparse convolu-
tions to speed up inference using test-time range masking.

3.3. Near-Far Ensembles

We explore the idea of near-far ensembles, as shown in
Fig. 2, to considerably improve the run-time of a range
ensembles. We can achieve these efficiency gains by pro-
cessing different range experts asynchronously at different
frequencies. Intuitively, we care more about changes to
our near-field to avoid immediate collisions and can up-
date the far-field region less frequently for longer-term plan-
ning. We run the high resolution near-field model at every
timestamp and process the long-range models at every other
timesetep. To estimate object locations for frames without
far-field processing, we forecast previous detections using a
constant velocity model. We are able to predict per-object
velocity estimates from our models because the input to our
detectors is a stack of aggregated LiDAR sweeps which im-
plicitly encodes object motion. This constant velocity fore-
cast, which simply updates the past object location using the
predicted object velocity estimate (e.g. box.center+=
box.velocity*time_delta), is reasonable because
we are only forecasting 0.5 seconds into the future. In-
tuitively, all object motion can be linearized given a suf-
ficiently small time delta. Importantly, since all detections
are in the ego-vehicle coordinate frame, forecasting past de-
tections into the current frame requires ego-motion compen-
sation between frames. We present simplified python-like
pseudo-code in Alg. 1.

4. Experiments
In this section, we demonstrate how detection range af-

fects the accuracy-latency trade off for 3D detectors. Next,
we evaluate a number of popular 3D BEV-based detectors,
including PointPillars [16], CBGS[39], CenterPoint [36],
and TransFusion [1] on Argoverse 2.0 [34], a long-range
detection dataset.

4.1. Dataset and Metrics

We conduct our experiments on Argoverse 2.0 [34], an
autonomous driving dataset with data collected in six US
cities. It labels 26 semantic classes for the 3D detection
task. Notably, Argoverse 2.0 produces long-range LiDAR
point clouds and object annotations (up to ±150m). In com-
parison, KITTI [10] only annotates up to +70m (with a
front facing LiDAR), nuScenes [2] annotates up to ±50m,
and Waymo [27] annotates up to ±75m. Following stan-
dard training protocols used in the nuScenes setup, we adopt
5-frame aggregation for LiDAR densification. We assume

Algorithm 1: We present python style pseudo-code
for the near-far range ensemble. Concretely, we run
the near-range expert model at every time step, but
only run the far-range expert every freq timesteps
(default is 2). We assume that the forecaster com-
pensates for ego-motion.

#near_expert: Near-range expert detector
#far_expert: Far-range expert detector
#freq: Frequency of of far-range detector
#donut_crop: Removes near-range lidar points
#forecast: Constant-velocity forecast
#dets: Dict[List] of detections

for time, lidar_sweep in enumerate(data):
# Run near-field range expert
near_dets = near_expert(lidar_sweep)

if time % freq == 0:
# Run far-field range expert
cropped_sweep = donut_crop(lidar_sweep)
far_dets = far_expert(cropped_sweep)

else:
# Forecast prev. detections
far_dets = forecast(dets[time - 1])

dets[time] = {near_dets, far_dets}

that we are provided with ego-vehicle pose for prior frames
to align all LiDAR sweeps to the current ego-vehicle pose.
Since LiDAR returns are sparse, this densification step is
essential for long-range detection.

We evaluate our model using the composite detection
score (CDS), a summary metric defined as the product of
average precision, computed as an average of four differ-
ent true-positive thresholds (0.5, 1.0, 2.0, and 4.0 meters)
and the sum of the complement of the normalized true pos-
itive errors (average translation error (ATE), average scale
error (ASE), and average orientation error (AOE)). We refer
readers to [5] for a detailed description of this metric.

4.2. Implementation Details

BEV-based detectors often follow the same general ar-
chitecture. First, sparse LiDAR points are voxelized to form
a dense feature map. This dense map is then processed by
the SECOND [35] backbone and FPN neck. Lastly, Point-
Pillars and CBGS process this BEV feature using a min-
imal SSD-like detection head. CenterPoint uses a center-
based detection head which predicts object center’s using a
heatmap and regresses all other attributes, and TransFusion
uses a DETR-like transformer decoder, which directly pre-
dicts amodal bounding boxes. All four models predict ob-
ject semantics and regression bounding box location, size,
orientation, and instantaneous velocity. We keep the model
architecture fixed for our study, only tuning the range and



ID Model Method Point Proc. Backbone Neck Head Post Proc.

1 PointPillars 50/4 → 50 10.5 ± 3.0 3.5 ± 0.2 1.9 ± 0.1 1.2 ± 0.1 58.2 ± 1.6
2 CBGS 50/12.5 → 50 43.6 ± 4.0 4.7 ± 0.3 2.5 ± 0.1 1.2 ± 0.2 55.9 ± 3.5
3 CenterPoint 50/12.5 → 50 45.8 ± 5.5 2.7 ± 0.3 0.8 ± 0.03 42.8 ± 0.6 440.9 ± 48.1
4 TransFusion-L 50/12.5 → 50 264.9 ± 45.8 4.5 ± 0.2 1.3 ± 0.3 9.8 ± 3.4 1.5 ± 0.5

1 PointPillars 100/4 → 100 25.6 ± 7.3 10.6 ± 0.1 13.1 ± 0.1 4.1 ± 0.1 62.0 ± 1.3
2 CBGS 100/6.25 → 100 40.0 ± 3.2 4.7 ± 0.1 2.5 ± 0.1 1.2 ± 0.1 58.6 ± 1.9
3 CenterPoint 100/6.25 → 100 42.3 ± 6.1 4.8 ± 0.2 0.8 ± 0.1 42.7 ± 0.6 448.1 ± 54.8
4 TransFusion-L 100/6.25 → 100 257.7 ± 34.9 4.5 ± 0.4 1.3 ± 0.1 9.3 ± 2.6 1.5 ± 0.2

1 PointPillars 150/2 → 150 4.0 ± 1.2 6.6 ± 0.3 8.1 ± 0.2 2.7 ± 0.3 60.0 ± 9.1
2 CBGS 150/3.125 → 150 35.5 ± 1.9 3.0 ± 0.1 1.7 ± 0.1 1.1 ± 0.1 58.8 ± 1.5
3 CenterPoint 150/3.125 → 150 33.5 ± 4.4 3.3 ± 0.2 0.6 ± 0.1 26.1 ± 1.0 291.1 ± 66.9
4 TransFusion-L 150/3.125 → 150 240.9 ± 31.6 3.3 ± 0.7 0.8 ± 0.1 9.0 ± 2.1 1.5 ± 0.5

Table 1: Impact of Range on Timing. We find that increasing range and proportionally decreasing voxel resolution keeps
run time (in milliseconds) approximately constant. Within a fixed compute budget, tuning range and voxel resolution are the
two key “knobs” to trade off latency and accuracy. Further, we find that the point-processing takes a majority of the run time
(excluding post-processing). Lastly, we note that CenterPoint’s head is more than four times slower than the transformer head
in TransFusion and ten times slower than the anchor head in PointPillars. Empirically, we find that this slowdown is due to
inefficient bounding box decoding from the CenterPoint regression heads (which can be significanlty optimized).

voxel size. We use the open source implementations of
these four detectors from mmdetection3d [7, 1, 21]. We
adopt a basic set of data augmentations, including global
3D tranformations, flip in BEV, and point shuffling during
training. We train our model with 8 RTX 3090 GPUs and a
batch size of 1 per GPU. The training noise (from random
seed and system scheduling) is < 1% of the accuracy (stan-
dard deviation normalized by the mean). We also report the
mean timing of three runs for key experiments. For con-
sistent measurement of model runtime, we evaluate with a
batch size 1 on a Tesla V100 GPU [29, 17, 31].

Timing of Individual Components: We provided a de-
tailed component-wise runtime analysis for the models in
Table 1. CBGS is architecturally identical to PointPillars,
but uses a VoxelNet encoder instead of a PillarEncoder.
CenterPoint is architecturally identical to CBGS, but uses
a center regression head instead of an anchor-based detec-
tor head. TransFusion-L (the LiDAR-only variant of Trans-
Fusion) is architecturally idential to CenterPoint, but uses
a DETR-like transformer decoder as a detector head. Al-
though CBGS, CenterPoint and TransFusion use the same
VoxelNet encoder, we find that TransFusion’s point pro-
cessing is nearly 5x slower, likely because it uses spconv1.0
rather than spconv2.0 [8]. Since the SECOND backbone
and neck are identical between the four models, timing
numbers are consistent. Further, we note that the anchor-
based detector head used in PointPillars and CBGS is the
fastest, followed by TransFusion’s head. CenterPoint’s head

is the heaviest, notably taking 40x longer than the anchor-
based head. TransFusion’s post-processing time is signif-
icantly faster than other models because the transformer
head decoding stage does not perform non-maximal sup-
pression (NMS).

In general, post-processing takes a considerable frac-
tion of the runtime for all models. This is a result of us-
ing research-level code and can be further optimized, but
it is beyond the scope of this work. We find that this
post-processing time is relatively constant within model-
families. For subsequent timing results we omit the post-
processing time since this is a dominanting factor which
makes analysis more difficult. In practice, this can be sped
up using GPU implementations of max-pooled NMS in-
stead of the standard (greedy association) NMS [3].

4.3. Empirical Analysis

We evaluate range experts for a variety of detector ar-
chitectures. Unsurprisingly, we find that the range ensem-
ble consistently outperforms range experts, but is nearly
3x slower. The near-far ensemble provides a “sweet spot”
that is 33% faster than the range ensemble, while also often
performing better than the best range-expert. Interestingly,
we find that some architectures are better at generalizing
across-range.

Tuning Range Experts. We evaluate a simple change to
our training protocol which modifies the data distribution to
specialize to a particular range interval. As shown in Tab 2,
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Figure 4: Without re-training, we can re-run a 100m trained PointPillars model (top left, 100/4 green dots) at different
ranges (top left, green curve). Interestingly, the 100m PointPillars range expert outperforms both the 50m and 150m range
experts (top left, blue triangles), suggesting that we should “give up” on far-field detections. However, to avoid giving up on
long-range detection, we ensemble our range experts to achieve considerably higher performance than any single PointPillars
model, but is almost 3x as slow as the 100m range expert (top left, pink star). In contrast, the near-far ensemble achieves
a “sweet spot” between the speed of the single range expert and the performance of the naive range ensemble. We see a
similar trend with the CenterPoint model family (bottom left). Again, the 100m CenterPoint range expert beats the 50m and
150m range experts. However, the CenterPoint 100m range ensemble evaluated at 150m almost matches the performance
of the range ensemble, serving as the best single model. In such cases, we find that the range-ensemble does not provide
significant benefit. Unlike the PointPillars and CenterPoint model families, we see that the best-performing CBGS range
expert is the 50m model (top right). However, we note that the performance is considerably lower than either PointPillars
or CenterPoint. Further, running the 50m CBGS range expert at 100m and 150m leads to degraded performance. This
suggests that CBGS does not generalize well to far-field detection. Lastly, we consider TransFusion, a recent state-of-the-art
transformer-based detector (bottom right). Unlike the prior three models, we find that we cannot easily run TransFusion in a
“fully-convolutional” mode. Specifically, although we note strong performance for the 100m range expert when run at 100m,
we notice that performance drops to nearly 0 CDS when run on either the 50m or 150m ranges. We posit that TransFusion’s
use of relative positional encoding rather than metric encoding leads to catastrophically poor across-range generalization.



forcing models to specialize to particular ranges by mask-
ing out “donut-holes” in the point cloud and upsampling
far-field objects does not result in better performance com-
pared to the standard approach of training on the full range
of LiDAR points. We find that train-time range masking
hurts performance, likely because the model is trained with
less data overall. For example, in the 50-100m range, the
100m range expert achieves 13.1 CDS whereas the model
trained with a “donut” shaped LiDAR sweep only attains
9.6 CDS. Similarly, in the 100-150m range, we see that the
150m range expert achieves 5.3 CDS whereas the model
trained with a “donut” shaped LiDAR sweep gets 3.6 CDS.
Similarly, We find that upsampling classes within a spe-
cific range interval does worse than the baseline, likely be-
cause the distribution of objects seen during train time is
significantly different than that seen at test-time. Based
on this investigation, range experts should simply train on
the full range without specializing for specific range inter-
vals. However, we find that masking out “donut holes” in
the point cloud during inferences does not affect detection
performance, and provides a modest speedup due to sparse
computation.

Generalization Across Range. As shown in Figure 4,
some models generalize well across ranges (e.g. Center-
Point (bottom right) green curve increases when evaluated
on a range beyond the training range), some generalize
poorly (e.g. CBGS (top left) green curve decreases when
evaluated beyond the training range.), and some don’t gen-
eralize at all (e.g. TransFusion achieves nearly 0% CDS
when evaluated on a range that is different than the training
range). We examine these trends through the lens of model
architectures and training losses.

First, we note that PointPillars has some generaliza-
tion capability across ranges. Notably, when we evaluate

ID Method 0-50m. 50-100m 100-150m

1 50/8 → 50 31.5

2 100/4 → 100 26.9 13.1
3 + Range Masking 9.6
4 + Up-sampling 7.7

5 150/2 → 150 16.9 9.4 5.3
6 + Range Masking 3.6
7 + Up-sampling 2.1

Table 2: Range Specialization. We evaluate range-
masking and object up-sampling using PointPillars, and find
that both negatively impact the performance of the range-
expert, suggesting that the best strategy for training range
experts is to generalize to other ranges outside of the region
of interest. This conclusion holds for both the 100/4 → 100
and 150/2 → 150 range experts.

the 100m range expert at 150m, the performance does not
change, indicating that the model likely predicts all far-field
detections with a lower confidence than near-field detec-
tions. We argue that knowing what you don’t know is a
form of generalization.

Second, as described in Section 4.2, CBGS is architec-
turally identical to PointPillars, but uses a VoxelNet encoder
instead of a PointNet encoder. Unlike PointPillars, CBGS
predicted far-field detections with higher confidence than
some near-field detections, resulting in lower performance
when evaluating long-range detections. We posit that Point-
Pillars’ PointNet encoder captures local features that gener-
alized better than the global features encoded by VoxelNet.

Next, we consider the surprising across-range general-
ization capabilities of CenterPoint. CenterPoint is archi-
tecturally identical to CBGS, but uses a center regression
head instead of an anchor-based detector head. Although
these are architecturally similar, we posit that the difference
in training loss significantly impacts generalization. CBGS
attempts to maximize the IOU of its predictions with the
ground truth. In contrast, CenterPoint learns to regress a
heatmap of Gaussian targets. We posit that these “soft tar-
gets” act as a form of data augmentation, which make it
easier to train the model.

Lastly, we consider TransFusion, which doesn’t gener-
alize across-ranges at all. Specifically, although we ob-
serve strong performance for the 100m range expert when
evaluating at 100m, we notice that performance drops to
nearly 0 CDS when run on either the 50m or 150m ranges.
TransFusion-L (the LiDAR-only variant of TransFusion) is
architecturally identical to CenterPoint, but uses a DETR-
like transformer decoder as a detector head. We posit that
using metric positions for positional encoding rather than
relative positions may yield better across-range generalisa-
tion.

5. Conclusion
We provide analysis on the effect of detection range for

3D object detectors, showing that range is an important
“knob” to trade off accuracy and latency. We use our anal-
ysis to build a simple ensemble of range experts that ex-
ploits a fundamental property of LiDAR; namely that sen-
sor returns become sparse at range, allowing for coarser
voxel binning. While highly performant, an ensemble of
range experts can be slow, and is unsuitable for real-time
applications like autonomous navigation. To address this
limitation, we propose near-far ensembles, which run near-
field detectors at higher frequency (for immediate collision
avoidance and far-field detectors at lower frequency (for
long-horizon planning). We also explore the generalization
of BEV-based 3D detectors across range and find that cer-
tain combinations of voxel encoders and detector heads lead
to better across-range generalization.
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