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(1) Long-Range Detection

* Existing 3D LiDAR detectors struggle to detect far away objects
(e.g. 300m) due to time and compute constraints.

* To manage compute, we can adopt a coarser grid or limit the
processing range.

(3) Near-Far Range Ensemble
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for time, lidar_sweep in enumerate (data):
# Run near—field range expert
near_dets = near_expert (lidar_sweep)

if time % freq ==
# Run far—-field range expert
cropped_sweep = donut_crop(lidar_sweep)
far dets = far_expert (cropped_sweep)
else:
# Forecast prev. detections
far dets = forecast (dets|[time - 1])

dets[time] = {near_dets, far_dets}

* We can trivially speed up multi-range ensembles via range-
specific asynchronous processing.

* Inspired by hierarchical “slow-fast” planners that run a low-
frequency planner with a high frequency reactive controller, we
can run near-range experts at high frequency (to avoid
immediate collision) and run far-range experts at lower
frequency (for long-term planning).

(4) Accelerating Inference

* Since each range-expert in our ensemble only contributes within
a range 1nterval, we can speed up inference by embracing sparse
convolutional processing. We can simply mask out all other
points outside of the processing range.

Full paper available at arxiv.org/abs/2308.04054

(2) Accuracy vs. Latency Trade-0Off
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* Range experts can generalize. The 100m range-expert (orange
point) generalizes to different ranges via fully-convolutional
processing.

* Range is the most effective “knob” for trading off accuracy-
vs-latency. Using 2x larger voxels (yellow triangle) improves
latency but reduces performance.

* It (apparently) pays to “give up” on long range. Running the
100m range expert at 200m does not improve performance but
increases latency. Can we do better? Use range ensembles!

(5) Across-Range Generalization
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* Detectors have different across-range generalization
characteristics with fully-convolutional processing

* PointPillars. The 100m range-expert outperforms both the S0m
and 150m range experts, suggesting that we should “give up” on
far-field detection.

* CenterPoint. The 100m range-expert evaluated at 150m nearly
matches the performance of the range-ensemble, suggesting that
model ensembles may not always be necessary

* CBGS. The 50m range-expert outperforms the 100m and 150m
experts. However, running the 50m model at far range degrades
performance, suggesting poor far-field generalization.

* TransFusion. We posit that the use of relative positional
encoding rather than metric encoding leads to catastrophically
poor across-range generalization
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