
Better Call SAL: Towards Learning to
Segment Anything in Lidar

Aljoša Ošep1* Tim Meinhardt1* Francesco Ferroni1 Neehar Peri2
Deva Ramanan2 Laura Leal-Taixé1

*Equal contribution
https://github.com/nv-dvl/segment-anything-lidar

1NVIDIA 2CMU

Class-agnostic
instance segmentation

Text prompts:
{car, building, . . .}

Text prompts:
{trash bin}

Text prompts:
{streetcar}

Fig. 1: The SAL (Segment Anything in Lidar) model performs class-agnostic instance
segmentation (i) and zero-shot classification via text prompting. This allows us to not
only predict panoptic segmentation (ii) for fixed class vocabularies but also segment
any object (iii and iv) in a given Lidar scan.

Abstract. We propose the SAL (Segment Anything in Lidar) method
consisting of a text-promptable zero-shot model for segmenting and clas-
sifying any object in Lidar, and a pseudo-labeling engine that facili-
tates model training without manual supervision. While the established
paradigm for Lidar Panoptic Segmentation (LPS) relies on manual super-
vision for a handful of object classes defined a priori, we utilize 2D vision
foundation models to generate 3D supervision “for free”. Our pseudo-
labels consist of instance masks and corresponding CLIP tokens, which
we lift to Lidar using calibrated multi-modal data. By training our model
on these labels, we distill the 2D foundation models into our Lidar SAL
model. Even without manual labels, our model achieves 91% in terms
of class-agnostic segmentation and 54% in terms of zero-shot LPS of
the fully supervised state-of-the-art. Furthermore, we outperform sev-
eral baselines that do not distill but only lift image features to 3D. More
importantly, we demonstrate that SAL supports arbitrary class prompts,
can be easily extended to new datasets, and shows significant potential
to improve with increasing amounts of self-labeled data. We release all
models and the code.

ar
X

iv
:2

40
3.

13
12

9v
2

 [
cs

.C
V

]
 2

5
Ju

l 2
02

4

https://github.com/nv-dvl/segment-anything-lidar

2 A. Ošep et al.

1 Introduction

We tackle segmentation and recognition of objects in Lidar point clouds, a task
commonly tackled via Lidar Panoptic Segmentation (LPS).

Status quo. LPS has been gaining significant attention in the community due
to its role in scene understanding, which is vital for safe autonomous navigation.
Thanks to the availability of labeled datasets [6, 18] and advances in learning
representations from unordered point sets [12, 65, 66, 79], the Lidar community
made significant progress in learning to segment and classify instances of pre-
defined and manually-labeled classes. While this progress has been impressive,
existing models [2,26,36,45,70,74,98] cannot adapt to continually evolving class
ontologies [40] that may even vary in different geographic regions [82].

Stirring the pot. We challenge this well-established approach and investigate
how we can train general LPS models that can be prompted to segment point
clouds according to any object class vocabulary. Towards such a promptable
Lidar segmentation approach, we first need to be able to segment any object, a
capability that remains elusive in the Lidar domain.

Towards segmenting anything in Lidar. To address these challenges, we
propose SAL, which consists of a text-promptable zero-shot model (Fig. 2, left)
for panoptic segmentation of arbitrary objects (Fig. 1), and pseudo-labeling en-
gine (Fig. 2, right) that facilitates model training directly from raw sensory
data. The SAL pseudo-label engine automatically labels Lidar sequences using
image segmentation [31] and vision-language models [67]. We utilize SAM [31] to
generate class-agnostic masks in images, and CLIP [67] to generate per-mask to-
kens that connect visual features to language, and finally, transfer both to Lidar
using a calibrated sensory setup. Even though generated pseudo-labels only par-
tially cover Lidar scans and are inherently noisy due to errors in the image-level
generation process and imperfect sensory calibration, we demonstrate their effec-
tiveness as self-supervised training data for the SAL zero-shot model. In contrast
to prior work in LPS, SAL can be prompted with any semantic vocabulary during
test-time without model re-training or tuning. Different from recent advances in
zero-shot semantic segmentation [58] SAL does not require image features during
inference and can segment full 360◦ point clouds.

Talk to your SAL. Our model predicts Lidar segmentation masks and their
corresponding CLIP tokens, which allow us to perform zero-shot classification
of segmented objects using arbitrary text prompts (Fig. 1). We evaluate SAL
by prompting our zero-shot model on standard benchmarks for LPS. For class-
agnostic segmentation, we reach 91% of the performance of manually supervised
baselines. By classifying segmented objects in a zero-shot manner, we report the
first (and very encouraging) results for zero-shot LPS and reach 42% and 54% of
the supervised baselines trained on SemanticKITTI and nuScenes, respectively.
Beyond that, as shown in Fig. 1, we can prompt SAL model to segment objects
outside of existing Lidar dataset class vocabularies.

Segment Anything in Lidar 3

Segment Anything in Lidar:
Vision Foundation Model to Lidar Distillation

SAL
Pseudo-Label Engine

Training With
Pseudo-Labels

(Distillation)

Training:Inference:

CLIP

Text Prompts

1. car
2. person
3. road
…
C. traffic sign

SAL
Zero-Shot

Model

Instances + Semantics

Lidar Point Cloud
SAL

Zero-Shot
Model

SAM

Unlabeled
Camera and Lidar Data

Fig. 2: SAL overview: Given a Lidar scan and a class vocabulary prompt, specified as
a list of per-class free-form text descriptions (left), SAL segments and classifies objects
(things and stuff classes). As labeled data for training such a model does not exist,
we supervise SAL by distilling off-the-shelf vision foundation models to Lidar (right).

Contributions. As our main contribution, we re-think the established ap-
proach to Lidar Panoptic Segmentation and (i) present SAL for segmentation
and classification of any object in a Lidar scan. As we do not utilize labeled
Lidar data, we propose (ii) a pseudo-label engine that distills vision foundation
models to the Lidar domain. The resulting pseudo-labels allow us to train (iii) a
zero-shot LPS model without any human supervision. We demonstrate (iv) en-
couraging results on standard LPS benchmarks and outline a clear path towards
universal, promptable segmentation foundation models for Lidar data.

2 Related Work

Lidar has played a pivotal role since the dawn of embodied navigation [62,80,81].
Recent data-driven efforts in Lidar perception have been pushing boundaries in
semantic segmentation [3, 12, 37, 49, 71, 77, 84, 85, 87, 100], object detection [33,
42,44,59–61,90,92,97], and tracking [25,51,78].

Lidar panoptic segmentation. Recently, Lidar Panoptic Segmentation [4,6,
7, 18] has emerged as a holistic approach to Lidar-based dynamic scene under-
standing. Prior works [2, 4, 19, 26, 28, 32, 36, 45–47, 70, 91, 98, 99] learn to group
and classify points specified in the training data according to the target class
vocabularies, while methods for open-set instance [24, 51, 78] and panoptic seg-
mentation [83] rely on bottom-up grouping based on Euclidean distance between
points. While these developments have been impressive, end-to-end methods re-
main limited to specific target classes that appear in the training data, while
bottom-up, clustering-based approaches [24,27,51,78,83] are sensitive to a par-
ticular choice of clustering parameters and are unable to improve their perfor-
mance in a data-driven fashion. In contrast, the SAL zero-shot model not only
learns to segment objects but is also capable of zero-shot classification.

Self-supervised learning for Lidar. As labeled data in the Lidar domain
is scarce, several works investigate how contrastive learning, proven effective
in the image domain [10, 23], can reduce the need for labeled data. SegCon-
trast [54] learns to align representations of point clouds and their augmented
views, utilizing density-based clustering (DBSCAN [17]) to pool and contrast

4 A. Ošep et al.

features. Rather than using DBSCAN, [41,72] leverage image-based methods [1]
and foundation models [31] to perform contrastive alignment between image and
corresponding Lidar features. The aforementioned methods only provide pre-
training recipes for potential segmentation downstream tasks. Our SAL method
goes a step further by training a full zero-shot Lidar Panoptic Segmentation
model that could benefit from such pre-training recipes.

Self-supervised (3D) object detection. Several methods (self-)supervise
object detectors with (RGB-D) videos [22,55–57,63,64], or Lidar sequences [52,
73,94] to discover objects in sensory streams. However, such motion-based super-
vision provides no semantic information. Therefore, [53] distills per-point (PCA
quantized) CLIP [67] features to Lidar for zero-shot classification of detected ob-
jects. Significantly different from [53], we tackle the more general and challenging
task of LPS, which segments and classifies both moving and stationary things
and stuff classes. To this end, we distill CLIP features not per point but per
object instance. This provides a more holistic object-centric semantic distillation
and allows us to supervise our model with non-quantized CLIP features.

Zero-shot recognition. Zero-shot recognition (ZSR) [86] methods (recently
also referred to as “open-vocabulary recognition”) tackle the recognition of dis-
tinct, yet related, semantic concepts that are either not labeled in the training
data (transductive) or not observed at all (inductive). Such methods assume a
dataset with labels for some classes, whereas unseen instances are supervised
via attributes or class names. The latter is often used in conjunction with word
embeddings [48]. By learning to align image-language features, ZSR methods
can infer class labels for unseen objects [67]. ZSR has also been explored in
the context of object detection, semantic segmentation, and panoptic segmenta-
tion [16,88] using word embedding models [5,8,50,68], or CLIP vision-language
embeddings [20,21,35,38,69,89,93,95,96]. In the context of semantic segmenta-
tion in RGB-D and Lidar data, [43,58] augment image and language embeddings
with features extracted from point clouds. Both rely on lifting dense image fea-
tures from images to 3D during inference, which limits their applicability to
setups with dense camera coverage. Similarly, [76] segments instances in accu-
mulated RGB-D point clouds (ScanNet [14]) and relies on manual supervision in
conjunction with image-based dense CLIP features for zero-shot classification.
Moreover, datasets such as ScanNet [14] were recorded with RGB-D sensors in
static environments and fused into 3D reconstructions based on scans, taken
from multiple viewpoints. In contrast, SAL directly applies to full Lidar point
clouds while requiring no image features at the inference time.

3 SAL: Segment Anything in Lidar

This section outlines the key challenges and components towards a Lidar model
that segments and classifies any object. We first define the underlying problem
formation in Sec. 3.1 and then present our (Segmenting Anything in Lidar) SAL
model in Sec. 3.2.

Segment Anything in Lidar 5

SAL Pseudo-Label EngineUnlabeled
Camera and
Lidar Data

Pseudo-Labels

Mask-to-CLIP

DBSCAN

Instance Masks

CLIP tokens

…
CLIP

SAM

2D-to-3D

(a) Pseudo-label engine

SAL Zero-Shot Model

Text Prompts

1. car
2. person
3. road
…
C. traffic sign

InstancesLidar Point Cloud

Object Queries

Instance DecoderBackbone
Objectness

CLIP token

Mask

… …

Semantics

…
CLIP

(b) Zero-shot model

Fig. 3: Our pseudo-label engine (Fig. 3a) utilizes SAM [31] to estimate segmentation
masks in images, MaskCLIP [16] to estimate corresponding per-mask CLIP features,
and a calibrated sensory setup to transfer them to the Lidar domain. We distill these
pseudo-labels to our zero-shot model (Fig. 3b), which segments and classifies Lidar
point clouds. The SAL zero-shot model employs a sparse-convolutional backbone [12],
followed by a Transformer decoder that predicts objectness scores, segmentation masks,
and CLIP tokens for each query. To (optionally) perform zero-shot classification, we
forward the dataset class vocabulary through the CLIP text encoder and match the
encoded vocabulary with predicted CLIP tokens. Our model requires no retraining for
different vocabularies and no image features at inference time.

3.1 Zero-Shot Lidar Panoptic Segmentation

The task. We discuss and evaluate SAL in the context of Lidar Panoptic Seg-
mentation (LPS), which tackles both instance segmentation and object recogni-
tion. LPS methods take as input an unordered point cloud P ∈ RN×4 encoding
spatial coordinates and their sensor intensity. The currently established problem
setting [7, 18] assumes supervision and task outputs as per-point semantic class
and instance identity labels. The class labels are confined to a pre-defined and
fixed class vocabulary V. In contrast, we tackle LPS in a generalized, zero-shot
setting, where the class vocabulary is only provided at inference, not training
time. Such a vocabulary V specifies target classes as a list of C class prompts.
Each prompt ci ∈ V is specified via free-form text, e.g ., with a class name and
optional class description. To perform zero-shot LPS a model must be designed
to segment and classify any object in a Lidar scan.

The challenge. Where do we get the data to train such a model? Image-based
models [16,21,31,93,95] rely on large and diverse datasets for pre-training [15],
dense prediction [13, 39], and foundation models that align images with textual
descriptions [67] – a commodity not available in the Lidar domain.

3.2 SAL Overview

Our 2D-to-Lidar distillation method consists of two core components: (i) The
pseudo-label engine transfers 2D vision foundation models into Lidar pseudo-
labels using multi-modal inputs from a calibrated sensory setup, shown in Fig. 3a.
(ii) Our zero-shot model is trained on the generated pseudo-labels and is
able to perform class-agnostic segmentation and zero-shot classification via text
prompts. Given a semantic dataset vocabulary, this allows us to tackle zero-shot
LPS as illustrated in Fig. 3b.

6 A. Ošep et al.

3.3 SAL Pseudo-Label Engine

The SAL pseudo-label engine relies on a calibrated multi-modal sensory setup
with k ≥ 1 RGB cameras. Furthermore, a sufficient overlap between the Lidar
sensing area and each camera view is paramount.

Mask generation: To pseudo-label object instances, we utilize the Segment
Anything (SAM) model [31], which generates an overlapping set of segmentation
masks. We flatten SAM’s output mask hierarchy by non-maxima suppression
(NMS) with a minimal overlap threshold to ensure mutually exclusive masks,
suppressing object parts and subparts in favor of objects. This way, we obtain
a set of non-overlapping binary masks mk

i ∈ {0, 1}W×H for each camera view k
with image plane of size W ×H.

CLIP image token generation: As shown by CLIP [67], aligning image
and text features allows vision-language foundation models to perform zero-shot
image classification based on arbitrary text prompts. To transfer this capability
to the Lidar domain, we generate a localized CLIP image feature token fk

i ∈ RCt

for each binary SAM mask mk
i . To obtain image tokens for a masked region of

the input image, we utilize [16] and their relative mask attention in the CLIP
image encoder feature space. Note that we never classify segments in the image
domain but merely distill CLIP image feature tokens to Lidar to facilitate zero-
shot classification during inference where we do not use any image features.

Image-to-Lidar unprojection: From the Lidar perspective, we unproject
each image mask mk

i ∈ {0, 1}W×H to a binary Lidar segmentation mask m̃i ∈
{0, 1}N by transforming the respective camera coordinate frame to the Lidar
space. For datasets with multiple cameras, such as nuScenes [18], we process each
image independently, followed by a cross-camera fusion of masks with a sufficient
IoU overlap and averaging of their CLIP image tokens. The unprojection yields
pairs {m̃k

i , f
k
i } of Lidar masks and their corresponding CLIP features.

Refinement via density-based clustering: Image-to-Lidar transformation
(Fig. 4a→Fig. 4b) is inherently noisy due to imperfect calibration and issues with
synchronization and Lidar rolling shutter. We improve our pseudo-label quality
by creating an ensemble of DBSCAN [17] clusters m̃l ∈ {0, 1}N , obtained by
varying the density threshold to compensate for varying density in Lidar point
clouds (details in Appendix A.1). We replace each m̃i with its best-matching
m̃l in case their IoU exceeds a minimal overlap threshold and retain the original
mask otherwise to obtain a refined set of pseudo-labels (Fig. 4c) that retain their
original cardinality and associated CLIP features.

3.4 SAL Zero-Shot Model

The universal SAL zero-shot model deconstructs LPS into class-agnostic segmen-
tation and zero-shot classification via text prompts.

Universal architecture. Instead of relying on highly specialized and engi-
neered LPS models, we base the SAL model on a universal Transformer decoder

Segment Anything in Lidar 7

(a) SAM masks (b) SAM unprojected (c) SAM + DBSCAN

Fig. 4: Refinement via clustering. After transferring image masks (Fig. 4a) to Lidar
(Fig. 4b), we obtain pseudo-labels that suffer from sensory misalignment-related issues.
Our geometric refinement (Fig. 4c) improves localization.

architecture (Fig. 3b), similar to [45]. Its 2D counterparts [9, 11] provide top-
performing results across semantic, instance, and panoptic segmentation for im-
ages. With increasing amounts of (pseudo-)labeled data, Transformer decoders
have the potential to achieve a similar impact in the Lidar domain. Following [45],
we deploy a Minkowski U-Net [12] backbone for feature extraction followed by a
Transformer decoder architecture with object query to point/voxel feature cross-
attention. Training our model to segment and classify any object and perform
the evaluation in a zero-shot setting requires a unique design of the final task
heads.

Class-agnostic segmentation. To localize segments in a point cloud, we rely
on two model heads that predict segmentation masks and objectness scores for
each query. The architecture of the former follows [45] and predicts binary output
masks m̂i ∈ {0, 1}N by computing the dot product between queries and point
features. The objectness head reduces the multi-class problem to a binary object
or no-object decision.

Zero-shot classification. To equip our model with zero-shot classification
capabilities without relying on any image input, we learn to predict CLIP [67]
Lidar tokens, i.e., features in the CLIP space obtained from Lidar inputs, for
each query. The token head consists of a three-layer MLP that directly regresses
tokens f̂ j

i . At inference, the predicted tokens are matched to text prompts via
the CLIP text encoder. The matching yields a probability distribution over the
prompts. To perform zero-shot LPS on a pre-defined dataset, we use its class
vocabulary as input text prompts (Fig. 3b).

We train our model jointly for both class-agnostic segmentation and zero-shot
classification with the following loss:

LSAL = Lobj + Lseg + Ltoken, (1)

with binary cross-entropy loss Lobj and a cosine distance loss Ltoken. The seg-
mentation loss Lseg follows [45] and consists of a binary mask cross-entropy and
dice loss. The LSAL loss is supervised by pseudo-label pairs {m̃k

i , f
k
i } obtained

from our label engine and thereby distills both 2D foundation models (SAM and
CLIP) into our LPS model.

How to train with partial labels? Partially (pseudo-)labeled point clouds
present a challenge for SAL model training. For example, in SemanticKITTI, only
14% of points are pseudo-labeled due to low camera coverage (see Tab. B.1). If

8 A. Ošep et al.

we naively train SAL on partially (pseudo-)labeled point clouds, the objectness
loss Lobj would penalize any segmentation in these regions as a false positive,
thereby teaching the model to ignore these points entirely. Empirically, we deter-
mined that the most effective training strategy is to (i) remove unlabeled points
from point clouds, (ii) utilize standard data augmentations (rotations, flipping,
scaling, and translations), in conjunction with proposed FrankenFrustum aug-
mentation (detailed in Appendix A.4) that mimics fully-labeled point clouds
during training by randomly removing unlabeled points and replicating labeled
frustum regions around the vertical axis. This augmentation does not increase
the overall label coverage, but our ablations in Sec. 4.2 show its effectiveness in
reducing the domain gap between training and inference input clouds.

4 Experiments

In the following section, we outline our experimental setup (Sec. 4.1) used to
ablate the SAL model and its training strategies (Sec. 4.2). Since SAL presents
the first Zero-Shot Lidar Panoptic Segmentation (ZS-LPS) model, we design
and compare with multiple hand-crafted baselines that implement concepts from
related works. We conclude our analysis by comparing our zero-shot performance
(Sec. 4.4) to fully-supervised LPS methods.

4.1 Experimental Setup

Datasets. We evaluate SAL on two public Lidar Panoptic Segmentation (LPS)
datasets, SemanticKITTI [6, 7] and nuScenes [18]. We utilize provided, human-
annotated ground-truth (GT) panoptic segmentation labels solely for evaluation
purposes, linear probing ablations, and baselines. We train SAL model only our
pseudo-labels (Sec. 3.3). To demonstrate the general applicability of SAL to other
domains and datasets, we further show qualitative results of SAL trained on
Waymo Open [75] dataset, which contains no GT LPS labels.

Metrics. For the evaluation, we utilize the standard Panoptic Segmentation [30]
metrics. The Panoptic Quality PQ = RQ×SQ combines Segmentation Quality
(SQ) and Recognition Quality (RQ), i.e., F-1 score. True positives (TPs) are
mask predictions with sufficient intersection-over-union (IoU) overlap with GT
masks of the same class.

Semantic Oracle (SO). The aforementioned metrics assume GT labels and
predictions with instance IDs and semantic classes for each point. Therefore,
they are not suitable for evaluating class-agnostic segmentation. To assess the
class-agnostic segmentation independently of semantics, we apply SO during the
evaluation by assigning ground truth semantic classes ci to predicted masks
mi via majority voting. Evaluation with SO is only needed for evaluation of
class-agnostic segmentation – our zero-shot models provide both instance and
semantic class predictions.

Stuff Merging (SM). SO allows us to asses class-agnostic instance segmen-
tation for things classes. However, this approach is unsuitable for assessing

Segment Anything in Lidar 9

the performance of stuff classes, as existing Lidar datasets merge instances
of stuff classes into a single instance. The things- stuff separation can be
unintuitive and inconsistent across datasets (e.g ., SemanticKITTI merges in-
stances of traffic signs into a single stuff class). In contrast, we fully embrace
the philosophy that all classes can be segmented into individual instances (e.g .,
segmentation models should localize individual trees/bushes in the vegetation
class or distinguish individual buildings). To evaluate our models on the target
datasets in the SO regime on Lidar datasets that do not provide instance-level
annotations for all classes, we additionally report results using a merge strategy
(SM), which merges all instances of a particular stuff class into a single mask to
ensure outputs of our models are consistent with the format of target datasets.

4.2 SAL Ablations

In this section, we discuss how to train SAL zero-shot segmentation model using
self-generated pseudo-labels (Tab. 1) and discuss design decisions behind our
instance (Tab. 2) and semantic distillation (Tab. 3).

Learning with partial labels. For the single-camera setup [6,7], our pseudo-
labels only cover 14% of the input point clouds (see Tab. B.1). Training on partial
label coverage presents a challenge for our model.

In Tab. 1, we only evaluate class-agnostic segmentation by applying SO and
SM (see Sec. 4.1). We compare SAL models trained using pseudo and GT labels.
The Frustum Filter removes all unlabeled points not visible in the camera frus-
tum during training and/or evaluation. As shown in Tab. 1, removing unlabeled
points from pseudo-labeled point clouds during training shows a significant ben-
efit on the performance (3rd row, 59.3 PQ) as compared to the variant, where we
merely ignore unlabeled region during the training (2nd row, 22.2 PQ). This is
likely due to data imbalance in a single-camera setup, leading to a class imbalance
between labeled/unlabeled points, incentivizing SAL to suppress predictions.

While utilizing standard augmentations (rotations, flipping, scaling, and trans-
lations) is crucial, we observe that performing our FrankenFrustum augmenta-
tion, which concatenates the visible portion of the point cloud around the z-axis
(see Sec. 3.4), significantly improves results (4th row, 62.5 PQ). Mixing point
clouds from different scans (5th row, 62.8 PQ) further boosts results. Overall,
we obtain 69 PQ from GT supervision (1st row) and 62.8 PQ when using our
pseudo-labels (5th row). Remarkably, our labels yield 91% of the GT performance
while covering only 14% of the input point cloud (see Tab. B.1). To further con-
textualize these results, we note that this evaluation is performed only on classes
for which GT instance labels are available. As shown in Fig. 1, our model learns
to segment a much larger variety of classes. Evaluating only the subset of points
visible in the camera (14% of all points, rows 6&7), the gap between the GT-
supervised model (71.8 PQ) and pseudo-supervised model (70.7 PQ) shrinks
further. We conclude that by training SAL model using pseudo-labels, we distill
the notion of objectness from SAM [31] into our model and obtain segmentation
capabilities, similar to the model trained on GT data.

10 A. Ošep et al.

Table 1: Class-agnostic segmentation.
By cropping unlabeled points and performing
data augmentations (in combination with our
FrankenFrustum), SAL successfully learns to
segment full point clouds even when only 14%
of points are (pseudo)-labeled.

Labels Frust.-Filter Franken PQ SQ PQTh PQSt
Train Eval Frust.

GT 69.0 83.5 81.6 59.7

Pseu. 22.2 67.5 45.1 5.5
Pseu. ✓ 59.3 78.2 65.8 54.5

Pseu. ✓ ✓ 62.5 79.1 67.6 58.8
Pseu. ✓ ✓(mix) 62.8 79.0 69.0 58.3

GT ✓ 71.8 84.8 84.6 62.5
Pseu. ✓ ✓ ✓(mix) 70.7 81.9 75.4 67.3

Table 2: Scaling. By contrast to GT
data/labels, by increasing the number
of queries, SAL improves performance
on stuff classes. By increasing the
amount of labeled data, we further im-
prove segmentation performance.

Train Num.
Quer. PQ SQ PQTh PQSt

Labels Set

GT train 100 67.8 82.4 79.7 59.2
GT train 200 67.9 83.6 79.8 59.3
GT train 300 69.0 83.5 81.6 59.7

Pseu. train 100 53.9 75.3 62.2 47.8
Pseu. train 200 60.8 77.0 66.7 56.5
Pseu. train 300 62.8 79.0 69.0 58.3

Pseu. bigtrain 300 65.3 79.5 71.9 60.5

Scaling queries and data. Analogous to the grid inference of SAM, which
operates with hundreds of spatial queries (prompts), we analyze the effect of
different numbers of decoder queries. We subsample instances during training
to train models with fewer queries than the maximum number of segments per
scan. As visualized in Tab. 2, increasing the number of decoder queries improves
the recognition of things for both training with pseudo and GT labels. However,
we observe a significant performance boost with pseudo labels for stuff classes
(58.3 PQSt, +10.8), while the improvement for GT labels is marginal (59.7 PQSt,
+0.5). Our model benefits from a larger number of queries for stuff classes as it
learns a fine-grained segmentation model that is not limited to a prefixed set of
things classes. In the last row, we concatenate pseudo-labeled train and test sets
(neither used for the validation) into a bigtrain set and observe an improvement
of +2.5 PQ, suggesting that scaling the amount of training data has the potential
to improve the performance of our models further.

Table 3: Semantic distillation.
We linearly probe the SAL model,
trained with and without semantic
distillation loss Ltoken. We train a
linear classifier with GT labels while
keeping backbone and decoder fea-
tures frozen. As can be seen, Ltoken

successfully distills a notion of se-
mantics into our model.
Linear prob. Ltoken PQ RQ SQ mIoU

× 20.0 26.3 55.2 23.4
× × 33.1 41.9 68.3 40.0

× 24.8 32.3 66.8 29.7

Semantic distillation. At inference, SAL
predicts a binary segmentation mask and ob-
jectness score for each query. To perform
zero-shot classification, our model addition-
ally predicts CLIP image tokens. This allows
us to not rely on image features during infer-
ence but prompt our predicted tokens with
arbitrary texts, i.e., object classes. Does the
token head loss Ltoken successfully distill a
notion of object semantics from CLIP into
our model? To verify this, we perform linear
probing experiments: we replace the token
distillation head of a trained model with a
linear classifier (backbone and instance de-

coder remain frozen) and train it using GT labels. As can be seen in Tab. 3,
distilling CLIP features into our model significantly improves linear probing

Segment Anything in Lidar 11

Table 4: Zero-shot panoptic segmentation. We utilize prior efforts in the image
domain [31] and Lidar [58] domain to craft multiple baselines that only unproject
segmentation masks and lift image features to Lidar. By contrast, SAL distills outputs
of such baselines (pseudo-labels) into a stronger Lidar segmentation model. With Image
Feat. we denote methods that require image features at inference time, and Frust. Eval.
denotes the evaluation of a subset of points visible in the camera.

Method Frust. Image Default classes Super classes
Eval Feat. PQ SQ PQTh PQSt mIoU PQ SQ PQTh PQSt mIoU

Class-agnostic Segmentation (Semantic Oracle)

SAM ✓ ✓ 46.0 72.1 49.7 43.4 – – – – – –
SAM+Erosion ✓ ✓ 42.2 69.4 45.6 39.6 – – – – – –

SAM+DBS (filter) ✓ ✓ 46.7 70.3 76.8 24.8 – – – – – –
SAM+DBS (replace) ✓ ✓ 48.7 73.7 53.1 45.4 – – – – – –

SAL ✓ ✗ 70.7 81.9 75.4 67.3 – – – – – –

Zero-Shot Lidar Panoptic Segmentation

SAM+DBS+CLIP ✓ ✓ 27.5 71.5 31.7 24.5 30.6 51.1 77.5 71.2 41.0 54.3
SAL ✓ ✗ 33.1 71.4 22.8 40.5 33.5 63.9 84.2 88.3 51.7 66.4

SAM+DBS+CLIP ✗ ✗ 8.2 56.4 18.6 0.6 7.5 11.5 47.6 0.0 17.3 11.2
SAL ✗ ✗ 24.8 66.8 17.4 30.2 28.7 48.5 78.8 80.4 32.6 52.8

performance (33.1 PQ, 40 mIoU) compared to the baseline, not trained with
the semantic distillation loss Ltoken (20.0 PQ, 23.4 mIoU). This confirms that
by distilling CLIP features, we inject a notion of semantics into our model,
even though our model is not explicitly supervised with any labels containing
semantic information – the notion of semantics is learned implicitly via CLIP
feature distillation. Without this loss, our zero-shot model (24.8 PQ, 29.7 mIoU)
outperforms the linearly probed model tuned using GT semantic labels.

4.3 Class-Agnostic and Zero-Shot Lidar Panoptic Segmentation

As the first study tackling Zero-Shot Lidar Panoptic Segmentation (ZS-LPS),
we devise several strong baselines inspired by prior works in RGB-D semantic
segmentation. During inference, these methods utilize image-based models and
lift image features to 3D [58]. To ensure these are evaluated fairly, we report
results in Tab. 4 on the subset of points visible in at least one camera (Frust.
Eval.). Our SAL model does not have this limitation. Therefore, we additionally
report results evaluated on full point clouds in the bottom of Tab. 4.

Class-agnostic segmentation. Our first baseline (SAM [31]) generates masks
in images and unprojects them to Lidar (see Sec. 3.3), and leads to 46 PQ. We
observe bleeding edges (see Fig. 4b) after unprojecting from the cameras to Lidar
caused by imperfect calibrations. To mitigate these artifacts, we experiment with
slightly eroding SAM predictions in the image domain. However, this leads to a
performance drop (42.2 PQ), likely because smaller segments after erosion fail
to pass > 0.5 overlap with labeled instances.

12 A. Ošep et al.

Density-based filtering: Alternatively, to mitigate unprojection errors, we ex-
periment with density-based clustering methods. We generate a large pool of
DBSCAN (DBS) clusters and test two strategies to improve our SAM-based
segmentation labels: (i) filtering segments without a sufficient overlap with any
DBSCAN cluster or (ii) replacing segments with large overlaps.

SAM+DBS (filter): Intuitively, the filter approach removed Lidar segments only
segmentable in the image domain, e.g ., a SAM mask that segments a shadow
on a flat wall. While this strategy improves precision for things classes (76.8
PQTh, +27.1), it significantly degrades performance on stuff classes (24.8 PQSt

−18.6) and overall degrades PQ to 46.7.

SAM+DBS (replace): The replace strategy (that replaces SAM masks with DB-
SCAN clusters with sufficient mutual overlap), on the other hand, improves
both things and stuff classes to an overall PQ of 48.7 (+3.9) and and SQ 73.7
(+1.1), respectively. This improvement can be visually verified in Fig. 4c.

SAL: We train our SAL model using top-performing SAM+DBS (replace) and
observe a significant improvement (70.7 PQ) in terms of both things and stuff
classes. Even though SAL obtains significantly higher PQ than hand-crafted base-
lines, it also improves in terms of SQ (81.9 vs. 73.7 closest competitor), suggesting
that the distilled model is robust to projection artifacts.

Do we need a vision segmentation foundation model? To generate a set
with a sufficiently high recall, we need to cluster points with varying DBSCAN
radius parameters (details in Appendix A.1). This leads to a large set of predicted
masks per scan (5, 413 avg.). While most of the correct segments are in this set,
separating the signal from the noise is difficult. Prior works, such as [52], are
limited to moving thing classes as they rely on motion cues to filter static
point cloud regions and DBSCAN to group remaining points. Our core insight
is that we can utilize vision foundation models that already learned a notion
of objectness: SAM generates only 171 masks per image, reduced to 45 via
flattening, and to 39 masks after the unprojection, achieving a high recall with
only a few instances, or in other words, a high signal-to-noise ratio.

Zero-shot segmentation. So far, we discussed class-agnostic segmentation.
To obtain semantic class predictions per mask in a zero-shot fashion, we devise a
simple baseline inspired by [58]. Once masks are unprojected from the image to
Lidar space, we utilize associated CLIP features (directly extracted from images
using [16]) to perform zero-shot classification via dot product between encoded
class prompts and (lifted) CLIP features [67]. This baseline (SAM+DBS+CLIP)
can be understood as an approach that directly lifts image features from state-of-
the-art image-based models [16] to Lidar. We detail prompts in Appendix A.3.

There is a significant performance drop between SAM+DBS (replace) base-
line, evaluated with Semantic Oracle (5th row, 48.7 PQ), and zero-shot base-
line (SAM+DBS (replace)+CLIP), 7th row, 27.5 PQ. This is not surprising, as
zero-shot segmentation is a challenging problem in both image [16] and Lidar
domains. To this end, even when transferring features of state-of-the-art image-
based models to Lidar we observe a significant performance drop. Remarkably,

Segment Anything in Lidar 13

Table 5: Lidar Panoptic Segmentation (LPS) on SemanticKITTI and
nuScenes validation sets. We prompt our zero-shot SAL model with the respec-
tive class vocabularies and compare its performance to fully-supervised baselines. On
SemanticKITTI and nuScenes, we reach 42% and 54% of the fully-supervised model,
respectively. This gap reduces significantly when we evaluate super classes.

Method Supervision Default classes Super classes

PQ RQ SQ PQTh PQSt mIoU PQ RQ SQ mIoU

Se
m

an
ti

cK
IT

T
I DS-Net [26] Full 57.7 68.0 77.6 61.8 54.8 63.5 – – – –

PolarSeg [98] Full 59.1 70.2 78.3 65.7 54.3 64.5 – – – –
EfficientLPS [74] Full 59.2 69.8 75.0 58.0 60.9 64.9 – – – –
GP-S3Net [70] Full 63.3 75.9 81.4 70.2 58.3 73.0 – – – –
MaskPLS [45] Full 59.8 69.0 76.3 – – – 78.4 87.1 88.2 84.5

SAL Full 59.5 69.2 75.7 62.3 57.4 63.8 81.7 90.0 89.2 85.9
SAL Zero-shot 24.8 32.3 66.8 17.4 30.2 28.7 48.5 59.4 78.8 52.8

nu
Sc

en
es

PHNet [36] Full 74.7 84.2 88.2 74.0 75.9 79.7 – – – –
DS-Net [26] Full 51.2 59.0 86.1 38.4 72.3 73.5 – – – –
GP-S3Net [70] Full 61.0 72.0 84.1 56.0 66.0 75.8 – – – –
EfficientLPS [74] Full 62.0 73.9 83.4 56.8 70.6 65.6 – – – –
PolarSeg [98] Full 63.4 75.3 83.9 59.2 70.4 66.9 – – – –
MaskPLS [45] Full 57.7 66.0 71.8 64.4 52.2 62.5 71.5 81.0 86.2 80.6

SAL Full 70.5 80.8 85.9 79.4 61.7 72.8 74.2 82.7 87.1 84.0
SAL Zero-shot 38.4 47.8 77.2 47.5 29.2 33.9 52.6 63.5 77.3 52.6

SAL distills such noisy image-based features to a stronger model (8th row, 33.1
PQ, +5.6 PQ). Finally, to emphasize the inherent limitation of baselines, relying
on image features, we evaluate on full 360◦ point clouds. SAL performs similarly
in both settings. The baseline, on the other hand, relies on image features and
is, therefore, unable to predict labels out of the camera frustum. This problem
can be mitigated by utilizing a setup with denser camera coverage.

Evaluation on super-classes. We observe that the CLIP classifier often confuses
related classes, e.g ., car and other vehicle. We additionally evaluate our se-
mantics by prompting with super-classes (as defined in [6]). This alone increases
PQ to 63.9 (48.5 when evaluating on full point clouds) and suggests significant
potential for improving prompting and text-to-image alignment.

4.4 Lidar Panoptic Segmentation Evaluation

Finally, we compare SAL with state-of-the-art LPS methods on standard bench-
marks [6, 18]. We focus this discussion on comparing SAL, trained using labeled
data, to our SAL zero-shot model. For the zero-shot evaluation, we specify classes,
defined in respective dataset vocabularies [6,18], as text prompts (we detail these
prompts in Appendix C.1). Importantly, zero-shot results are obtained without
training on any labeled data. In contrast, all baselines are trained using human-
labeled data and are constrained to their respective pre-defined class vocabularies.

SemanticKITTI. When evaluating with the default class vocabulary (Tab. 5),
our zero-shot model reaches 24.8 PQ or 42% of the fully-supervised model (59.5
PQ). As discussed in Sec. 4.2, our method is mainly limited by the quality of the
generated CLIP features. In practice, our zero-shot semantic classifier mainly

14 A. Ošep et al.

confuses objects within super classes, e.g ., car vs. other-vehicle. Therefore,
without any retraining, we prompt our zero-shot model with super classes
and obtain 48.5 PQ, 59% of the supervised model (81.7 PQ).

nuScenes. We report our result in Tab. 5 and reach similar conclusions. SAL
reaches 38.4 PQ on default classes, 54% of the supervised model (70.5 PQ). As
with SemanticKITTI, results consistently improve when evaluated with super-
classes. In this setting, zero-shot model yields 52.6 PQ. Note that SAL model,
supervised with labeled data, significantly outperforms MaskPLS.

Towards closing the gap. Compared to SemanticKITTI (24.8 PQ, 42%), we
observe a significantly smaller gap between the model trained on pseudo- and
ground truth labels for nuScenes (38.4 PQ, 54%). Despite its sparse Lidar signal
and more diverse input scenarios, SAL performs better on this challenging Lidar
dataset. We attribute this to a larger pseudo-label coverage of nuScenes (48%,
compared to 14% coverage on SemanticKITTI), and, therefore, effectively more
labeled data, which is also consistent with our observations on SemanticKITTI
w.r.t. increasing the amount of labeled data (Tab. 2). This trend suggests a clear
path forward: applying SAL to pseudo-label more data with zero annotation cost.

Beyond labeled datasets. Datasets, such as SemanticKITTI and nuScenes,
provide dense, point-level panoptic segmentation labels, which we use for analysis
and the evaluation of our method on a small set of classes that were labeled in the
respective dataset (14/11 things/stuff in SemanticKITTI, respectively, and
23/6 in nuScenes). To demonstrate the versatility of SAL, we additionally pseudo-
label and train a model on Waymo Open [75] dataset and show qualitative results
in Fig. 1 and Appendix E. This effort takes less than a week of pseudo-labeling
and model training efforts (we provide details in Appendix B.2).

The good, the (breaking) bad, and the ugly. While we are thrilled about
class-agnostic segmentation performance, our experimental analysis reveals a
substantial gap between full supervision and our zero-shot model. Finally, at the
moment, SAL is limited to training on specific datasets. As in fully-supervised
Lidar perception, cross-sensor generalization remains a challenge for SAL. This
could be addressed by utilizing temporal context, data scaling efforts and inves-
tigating sensor-agnostic backbone networks.

5 Conclusions

We proposed SAL, a method for Zero-Shot Lidar Panoptic Segmentation. The key
SAL components are a pseudo-label engine that utilizes vision foundation models
and a zero-shot model trained via self-supervision. While SAL is the first step in
the direction of learning general Lidar segmentation models by distilling image-
based foundation to Lidar, we believe we just scratched the surface and opened
the door for training Lidar segmentation models without manual supervision.
Acknowledgments. This project was funded, in parts, by ERC Starting Grant DynAI
(ERC-101043189). We are grateful to Žan Gojčič, Guillem Braso, Cristiano Saltori,

Segment Anything in Lidar 15

Sérgio Agostinho, and Jonas Schult for their feedback on the paper and their insightful
comments. Special thanks to Maxim Maximov for his help on figures.

16 A. Ošep et al.

References

1. Achanta, R., Shaji, A., Smith, K., Lucchi, A., Fua, P., Süsstrunk, S.: Slic su-
perpixels compared to state-of-the-art superpixel methods. IEEE Trans. Pattern
Anal. Mach. Intell. 34(11), 2274–2282 (2012)

2. Agarwalla, A., Huang, X., Ziglar, J., Ferroni, F., Laura, L.T., Hays, J., Osep,
A., Ramanan, D.: Lidar panoptic segmentation and tracking without bells and
whistles. In: Int. Conf. Intel. Rob. Sys. (2023)

3. Aksoy, E.E., Baci, S., Cavdar, S.: Salsanet: Fast road and vehicle segmentation
in lidar point clouds for autonomous driving. In: Intel. Veh. Symp. (2020)

4. Aygün, M., Ošep, A., Weber, M., Maximov, M., Stachniss, C., Behley, J., Leal-
Taixé, L.: 4d panoptic lidar segmentation. In: IEEE Conf. Comput. Vis. Pattern
Recog. (2021)

5. Bansal, A., Sikka, K., Sharma, G., Chellappa, R., Divakaran, A.: Zero-shot object
detection. In: Eur. Conf. Comput. Vis. (2018)

6. Behley, J., Garbade, M., Milioto, A., Quenzel, J., Behnke, S., Stachniss, C., Gall,
J.: SemanticKITTI: A Dataset for Semantic Scene Understanding of LiDAR Se-
quences. In: Int. Conf. Comput. Vis. (2019)

7. Behley, J., Milioto, A., Stachniss, C.: A Benchmark for LiDAR-based Panoptic
Segmentation based on KITTI. In: Int. Conf. Rob. Automat. (2021)

8. Bucher, M., Vu, T.H., Cord, M., Pérez, P.: Zero-shot semantic segmentation. Adv.
Neural Inform. Process. Syst. (2019)

9. Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., Zagoruyko, S.: End-
to-end object detection with transformers. In: Eur. Conf. Comput. Vis. (2020)

10. Caron, M., Misra, I., Mairal, J., Goyal, P., Bojanowski, P., Joulin, A.: Unsuper-
vised learning of visual features by contrasting cluster assignments. Adv. Neural
Inform. Process. Syst. (2020)

11. Cheng, B., Misra, I., Schwing, A.G., Kirillov, A., Girdhar, R.: Masked-attention
mask transformer for universal image segmentation. In: IEEE Conf. Comput. Vis.
Pattern Recog. (2022)

12. Choy, C., Gwak, J., Savarese, S.: 4D spatio-temporal convnets: Minkowski con-
volutional neural networks. In: IEEE Conf. Comput. Vis. Pattern Recog. (2019)

13. Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R.,
Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene
understanding. In: IEEE Conf. Comput. Vis. Pattern Recog. (2016)

14. Dai, A., Chang, A.X., Savva, M., Halber, M., Funkhouser, T., Nießner, M.: Scan-
net: Richly-annotated 3d reconstructions of indoor scenes. In: IEEE Conf. Com-
put. Vis. Pattern Recog. (2017)

15. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: A large-
scale hierarchical image database. In: IEEE Conf. Comput. Vis. Pattern Recog.
(2009)

16. Ding, Z., Wang, J., Tu, Z.: Open-vocabulary universal image segmentation with
maskclip. In: Int. Conf. Mach. Learn. (2023)

17. Ester, M., Kriegel, H.P., Sander, J., Xu, X., et al.: A density-based algorithm for
discovering clusters in large spatial databases with noise. In: Rob. Sci. Sys. (1996)

18. Fong, W.K., Mohan, R., Hurtado, J.V., Zhou, L., Caesar, H., Beijbom, O., Valada,
A.: Panoptic nuscenes: A large-scale benchmark for lidar panoptic segmentation
and tracking. IEEE Rob. Automat. Letters (2021)

19. Gasperini, S., Mahani, M.A.N., Marcos-Ramiro, A., Navab, N., Tombari, F.:
Panoster: End-to-end panoptic segmentation of lidar point clouds. IEEE Rob.
Automat. Letters (2021)

Segment Anything in Lidar 17

20. Ghiasi, G., Gu, X., Cui, Y., Lin, T.Y.: Scaling open-vocabulary image segmenta-
tion with image-level labels. In: Eur. Conf. Comput. Vis. (2022)

21. Gu, X., Lin, T.Y., Kuo, W., Cui, Y.: Open-vocabulary object detection via vision
and language knowledge distillation. arXiv preprint arXiv:2104.13921 (2021)

22. Harley, A.W., Zuo, Y., Wen, J., Mangal, A., Potdar, S., Chaudhry, R., Fragki-
adaki, K.: Track, check, repeat: An em approach to unsupervised tracking. In:
IEEE Conf. Comput. Vis. Pattern Recog. (2021)

23. He, K., Fan, H., Wu, Y., Xie, S., Girshick, R.: Momentum contrast for unsuper-
vised visual representation learning. In: IEEE Conf. Comput. Vis. Pattern Recog.
(2020)

24. Held, D., Guillory, D., Rebsamen, B., Thrun, S., Savarese, S.: A probabilistic
framework for real-time 3d segmentation using spatial, temporal, and semantic
cues. In: Rob. Sci. Sys. (2016)

25. Held, D., Levinson, J., Thrun, S., Savarese, S.: Combining 3d shape, color, and
motion for robust anytime tracking. In: Rob. Sci. Sys. (2014)

26. Hong, F., Zhou, H., Zhu, X., Li, H., Liu, Z.: Lidar-based panoptic segmentation
via dynamic shifting network. In: IEEE Conf. Comput. Vis. Pattern Recog. (2021)

27. Hu, P., Held, D., Ramanan, D.: Learning to optimally segment point clouds. IEEE
Robotics and Automation Letters 5(2), 875–882 (2020)

28. Hurtado, J.V., Mohan, R., Valada, A.: Mopt: Multi-object panoptic tracking.
arXiv preprint arXiv:2004.08189 (2020)

29. Kirillov, A., He, K., Girshick, R., Rother, C., Dollár, P.: Panoptic segmentation.
In: IEEE Conf. Comput. Vis. Pattern Recog. (2019)

30. Kirillov, A., He, K., Girshick, R.B., Rother, C., Dollár, P.: Panoptic segmentation.
IEEE Conf. Comput. Vis. Pattern Recog. (2018)

31. Kirillov, A., Mintun, E., Ravi, N., Mao, H., Rolland, C., Gustafson, L., Xiao, T.,
Whitehead, S., Berg, A.C., Lo, W.Y., et al.: Segment anything. In: Int. Conf.
Comput. Vis. (2023)

32. Kreuzberg, L., Zulfikar, I.E., Mahadevan, S., Engelmann, F., Leibe, B.: 4d-stop:
Panoptic segmentation of 4d lidar using spatio-temporal object proposal genera-
tion and aggregation. In: ECCV AVVision Workshop (2022)

33. Lang, A.H., Vora, S., Caesar, H., Zhou, L., Yang, J., Beijbom, O.: Pointpillars:
Fast encoders for object detection from point clouds. In: IEEE Conf. Comput.
Vis. Pattern Recog. (2019)

34. Lee, S., Lim, H., Myung, H.: Patchwork++: Fast and robust ground segmentation
solving partial under-segmentation using 3d point cloud. In: Int. Conf. Intel. Rob.
Sys. (2022)

35. Li, B., Weinberger, K.Q., Belongie, S., Koltun, V., Ranftl, R.: Language-driven
semantic segmentation. In: Int. Conf. Learn. Represent. (2022)

36. Li, J., He, X., Wen, Y., Gao, Y., Cheng, Y., Zhang, D.: Panoptic-phnet: Towards
real-time and high-precision lidar panoptic segmentation via clustering pseudo
heatmap. In: IEEE Conf. Comput. Vis. Pattern Recog. (2022)

37. Li, S., Chen, X., Liu, Y., Dai, D., Stachniss, C., Gall, J.: Multi-scale interaction for
real-time lidar data segmentation on an embedded platform. IEEE Rob. Automat.
Letters 7(2), 738–745 (2021)

38. Liang, F., Wu, B., Dai, X., Li, K., Zhao, Y., Zhang, H., Zhang, P., Vajda, P.,
Marculescu, D.: Open-vocabulary semantic segmentation with mask-adapted clip.
In: IEEE Conf. Comput. Vis. Pattern Recog. (2023)

39. Lin, T., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollár, P.,
Zitnick, C.L.: Microsoft COCO: Common objects in context. In: Eur. Conf. Com-
put. Vis. (2014)

18 A. Ošep et al.

40. Lin, Z., Pathak, D., Wang, Y.X., Ramanan, D., Kong, S.: Continual learning with
evolving class ontologies. Adv. Neural Inform. Process. Syst. (2022)

41. Liu, Y., Kong, L., Cen, J., Chen, R., Zhang, W., Pan, L., Chen, K., Liu, Z.:
Segment any point cloud sequences by distilling vision foundation models. arXiv
preprint arXiv:2306.09347 (2023)

42. Liu, Z., Zhang, Z., Cao, Y., Hu, H., Tong, X.: Group-free 3d object detection via
transformers. In: Int. Conf. Comput. Vis. (2021)

43. Lu, Y., Jiang, Q., Chen, R., Hou, Y., Zhu, X., Ma, Y.: See more and know more:
Zero-shot point cloud segmentation via multi-modal visual data. In: Int. Conf.
Comput. Vis. (2023)

44. Ma, Y., Peri, N., Wei, S., Hua, W., Ramanan, D., Li, Y., Kong, S.: Long-tailed
3d detection via 2d late fusion. arXiv preprint arXiv:2312.10986 (2023)

45. Marcuzzi, R., Nunes, L., Wiesmann, L., Behley, J., Stachniss, C.: Mask-based
panoptic lidar segmentation for autonomous driving. IEEE Rob. Automat. Letters
8(2), 1141–1148 (2023)

46. Marcuzzi, R., Nunes, L., Wiesmann, L., Marks, E., Behley, J., Stachniss, C.:
Mask4d: End-to-end mask-based 4d panoptic segmentation for lidar sequences.
IEEE Rob. Automat. Letters (2023)

47. Marcuzzi, R., Nunes, L., Wiesmann, L., Vizzo, I., Behley, J., Stachniss, C.: Con-
trastive instance association for 4d panoptic segmentation using sequences of 3d
lidar scans. IEEE Rob. Automat. Letters (2022)

48. Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word repre-
sentations in vector space. arXiv preprint arXiv:1301.3781 (2013)

49. Milioto, A., Vizzo, I., Behley, J., Stachniss, C.: RangeNet++: Fast and Accurate
LiDAR Semantic Segmentation. In: Int. Conf. Intel. Rob. Sys. (2019)

50. Miller, D., Nicholson, L., Dayoub, F., Sünderhauf, N.: Dropout sampling for ro-
bust object detection in open-set conditions. In: Int. Conf. Rob. Automat. (2018)

51. Moosmann, F., Stiller, C.: Joint self-localization and tracking of generic objects
in 3d range data. In: Int. Conf. Rob. Automat. (2013)

52. Najibi, M., Ji, J., Zhou, Y., Qi, C.R., Yan, X., Ettinger, S., Anguelov, D.: Motion
inspired unsupervised perception and prediction in autonomous driving. In: Eur.
Conf. Comput. Vis. (2022)

53. Najibi, M., Ji, J., Zhou, Y., Qi, C.R., Yan, X., Ettinger, S., Anguelov, D.: Unsuper-
vised 3d perception with 2d vision-language distillation for autonomous driving.
In: Int. Conf. Comput. Vis. (2023)

54. Nunes, L., Marcuzzi, R., Chen, X., Behley, J., Stachniss, C.: Segcontrast: 3d point
cloud feature representation learning through self-supervised segment discrimina-
tion. IEEE Rob. Automat. Letters 7(2), 2116–2123 (2022)

55. Osep, A., Voigtlaender, P., Luiten, J., Breuers, S., Leibe, B.: Towards large-scale
video video object mining. In: ECCV Workshop on Interactive and Adaptive
Learning in an Open World (2018)

56. Ošep, A., Mehner, W., Voigtlaender, P., Leibe, B.: Track, then decide: Category-
agnostic vision-based multi-object tracking. In: Int. Conf. Rob. Automat. (2018)

57. Ošep, A., Voigtlaender, P., Luiten, J., Breuers, S., Leibe, B.: Large-scale object
mining for object discovery from unlabeled video. In: Int. Conf. Rob. Automat.
(2019)

58. Peng, S., Genova, K., Jiang, C., Tagliasacchi, A., Pollefeys, M., Funkhouser, T.:
Openscene: 3d scene understanding with open vocabularies. In: IEEE Conf. Com-
put. Vis. Pattern Recog. (2023)

59. Peri, N., Dave, A., Ramanan, D., Kong, S.: Towards long-tailed 3d detection. In:
Conf. Rob. Learn. (2023)

Segment Anything in Lidar 19

60. Peri, N., Li, M., Wilson, B., Wang, Y.X., Hays, J., Ramanan, D.: An empirical
analysis of range for 3d object detection. In: ICCV Workshops (2023)

61. Peri, N., Luiten, J., Li, M., Ošep, A., Leal-Taixé, L., Ramanan, D.: Forecasting
from lidar via future object detection. In: IEEE Conf. Comput. Vis. Pattern
Recog. (2022)

62. Petrovskaya, A., Thrun, S.: Model based vehicle detection and tracking for au-
tonomous urban driving. Aut. Rob. 26, 123–139 (2009)

63. Pot, E., Toshev, A., Kosecka, J.: Self-supervisory signals for object discovery and
detection. arXiv preprint arXiv:1806.03370 (2018)

64. Prest, A., Leistner, C., Civera, J., Schmid, C., Ferrari, V.: Learning object class
detectors from weakly annotated video. In: IEEE Conf. Comput. Vis. Pattern
Recog. (2012)

65. Qi, C.R., Su, H., Mo, K., Guibas, L.J.: Pointnet: Deep learning on point sets for
3d classification and segmentation. In: IEEE Conf. Comput. Vis. Pattern Recog.
(2017)

66. Qi, C.R., Yi, L., Su, H., Guibas, L.J.: Pointnet++: Deep hierarchical feature
learning on point sets in a metric space. In: Adv. Neural Inform. Process. Syst.
(2017)

67. Radford, A., Kim, J.W., Hallacy, C., Ramesh, A., Goh, G., Agarwal, S., Sastry,
G., Askell, A., Mishkin, P., Clark, J., et al.: Learning transferable visual models
from natural language supervision. In: Int. Conf. Mach. Learn. (2021)

68. Rahman, S., Khan, S.H., Porikli, F.: Zero-shot object detection: Learning to si-
multaneously recognize and localize novel concepts. Asian Conf. Comput. Vis.
(2018)

69. Rao, Y., Zhao, W., Chen, G., Tang, Y., Zhu, Z., Huang, G., Zhou, J., Lu, J.:
Denseclip: Language-guided dense prediction with context-aware prompting. In:
IEEE Conf. Comput. Vis. Pattern Recog. (2022)

70. Razani, R., Cheng, R., Li, E., Taghavi, E., Ren, Y., Bingbing, L.: Gp-s3net:
Graph-based panoptic sparse semantic segmentation network. In: IEEE Conf.
Comput. Vis. Pattern Recog. (2021)

71. Razani, R., Cheng, R., Taghavi, E., Bingbing, L.: Lite-hdseg: Lidar semantic
segmentation using lite harmonic dense convolutions. In: Int. Conf. Rob. Automat.
(2021)

72. Sautier, C., Puy, G., Gidaris, S., Boulch, A., Bursuc, A., Marlet, R.: Image-to-lidar
self-supervised distillation for autonomous driving data. In: IEEE Conf. Comput.
Vis. Pattern Recog. (2022)

73. Seidenschwarz, J., Ošep, A., Ferroni, F., Lucey, S., Leal-Taixé, L.: Semoli: What
moves together belongs together. IEEE Conf. Comput. Vis. Pattern Recog. (2024)

74. Sirohi, K., Mohan, R., Büscher, D., Burgard, W., Valada, A.: Efficientlps: Efficient
lidar panoptic segmentation. IEEE Transactions on Robotics (2021)

75. Sun, P., Kretzschmar, H., Dotiwalla, X., Chouard, A., Patnaik, V., Tsui, P., Guo,
J., Zhou, Y., Chai, Y., Caine, B., et al.: Scalability in perception for autonomous
driving: Waymo open dataset. In: IEEE Conf. Comput. Vis. Pattern Recog. (2020)

76. Takmaz, A., Fedele, E., Sumner, R.W., Pollefeys, M., Tombari, F., Engelmann,
F.: Openmask3d: Open-vocabulary 3d instance segmentation. arXiv preprint
arXiv:2306.13631 (2023)

77. Tang, H., Liu, Z., Zhao, S., Lin, Y., Lin, J., Wang, H., Han, S.: Searching efficient
3d architectures with sparse point-voxel convolution. In: Eur. Conf. Comput. Vis.
(2020)

78. Teichman, A., Levinson, J., Thrun, S.: Towards 3D object recognition via classi-
fication of arbitrary object tracks. In: Int. Conf. Rob. Automat. (2011)

20 A. Ošep et al.

79. Thomas, H., Qi, C.R., Deschaud, J.E., Marcotegui, B., Goulette, F., Guibas,
L.J.: Kpconv: Flexible and deformable convolution for point clouds. In: Int. Conf.
Comput. Vis. (2019)

80. Thorpe, C., Herbert, M., Kanade, T., Shafer, S.: Toward autonomous driving: the
cmu navlab. i. perception. IEEE expert 6(4), 31–42 (1991)

81. Thrun, S., Montemerlo, M., Dahlkamp, H., Stavens, D., Aron, A., Diebel, J.,
Fong, P., Gale, J., Halpenny, M., Hoffmann, G.: Stanley: The robot that won the
darpa grand challenge. Journal of field Robotics (2006)

82. Wang, Y., Chen, X., You, Y., Li, L., Hariharan, B., Campbell, M., Weinberger,
K., Chao, W.: Train in germany, test in the usa: Making 3d object detectors
generalize. In: IEEE Conf. Comput. Vis. Pattern Recog. (2020)

83. Wong, K., Wang, S., Ren, M., Liang, M., Urtasun, R.: Identifying unknown in-
stances for autonomous driving. In: Conference on Robot Learning. pp. 384–393.
PMLR (2020)

84. Wu, B., Wan, A., Yue, X., Keutzer, K.: Squeezeseg: Convolutional neural nets with
recurrent crf for real-time road-object segmentation from 3d lidar point cloud. In:
Int. Conf. Rob. Automat. (2018)

85. Wu, B., Zhou, X., Zhao, S., Yue, X., Keutzer, K.: Squeezesegv2: Improved model
structure and unsupervised domain adaptation for road-object segmentation from
a lidar point cloud. In: Int. Conf. Rob. Automat. (2019)

86. Xian, Y., Lampert, C.H., Schiele, B., Akata, Z.: Zero-shot learning - a compre-
hensive evaluation of the good, the bad and the ugly. IEEE Trans. Pattern Anal.
Mach. Intell. (2018)

87. Xiong, X., Munoz, D., Bagnell, J.A., Hebert, M.: 3-D Scene Analysis via Se-
quenced Predictions over Points and Regions. In: Int. Conf. Rob. Automat. pp.
2609–2616 (2011)

88. Xu, J., Liu, S., Vahdat, A., Byeon, W., Wang, X., De Mello, S.: Open-vocabulary
panoptic segmentation with text-to-image diffusion models. In: IEEE Conf. Com-
put. Vis. Pattern Recog. (2023)

89. Xu, M., Zhang, Z., Wei, F., Hu, H., Bai, X.: Side adapter network for open-
vocabulary semantic segmentation. In: IEEE Conf. Comput. Vis. Pattern Recog.
(2023)

90. Yan, Y., Mao, Y., Li, B.: Second: Sparsely embedded convolutional detection.
Sensors 18(10), 3337 (2018)

91. Yilmaz, K., Schult, J., Nekrasov, A., Leibe, B.: Mask4d: Mask transformer for 4d
panoptic segmentation. arXiv preprint arXiv:2309.16133 (2023)

92. Yin, T., Zhou, X., Krähenbühl, P.: Center-based 3d object detection and tracking.
In: IEEE Conf. Comput. Vis. Pattern Recog. (2021)

93. Zareian, A., Rosa, K.D., Hu, D.H., Chang, S.F.: Open-vocabulary object detection
using captions. In: IEEE Conf. Comput. Vis. Pattern Recog. (2021)

94. Zhang, L., Yang, A.J., Xiong, Y., Casas, S., Yang, B., Ren, M., Urtasun, R.:
Towards unsupervised object detection from lidar point clouds. In: IEEE Conf.
Comput. Vis. Pattern Recog. (2023)

95. Zhong, Y., Yang, J., Zhang, P., Li, C., Codella, N., Li, L.H., Zhou, L., Dai, X.,
Yuan, L., Li, Y., et al.: Regionclip: Region-based language-image pretraining. In:
IEEE Conf. Comput. Vis. Pattern Recog. (2022)

96. Zhou, C., Loy, C.C., Dai, B.: Extract free dense labels from clip. In: Eur. Conf.
Comput. Vis. (2022)

97. Zhou, Y., Tuzel, O.: Voxelnet: End-to-end learning for point cloud based 3d object
detection. In: IEEE Conf. Comput. Vis. Pattern Recog. (2018)

Segment Anything in Lidar 21

98. Zhou, Z., Zhang, Y., Foroosh, H.: Panoptic-polarnet: Proposal-free lidar point
cloud panoptic segmentation. In: IEEE Conf. Comput. Vis. Pattern Recog. (2021)

99. Zhu, M., Han, S., Cai, H., Borse, S., Ghaffari, M., Porikli, F.: 4d panoptic seg-
mentation as invariant and equivariant field prediction. In: IEEE Conf. Comput.
Vis. Pattern Recog. (2023)

100. Zhu, X., Zhou, H., Wang, T., Hong, F., Ma, Y., Li, W., Li, H., Lin, D.: Cylindrical
and asymmetrical 3d convolution networks for lidar segmentation. In: IEEE Conf.
Comput. Vis. Pattern Recog. (2021)

22 A. Ošep et al.

Appendix

Abstract. The appendix provides additional implementation and de-
sign details of the SAL pseudo-label engine (A.1) and zero-shot model
(A.2), along with a discussion on different training strategies with par-
tial pseudo-labels (A.4). In A.3, we discuss the zero-shot text prompt
engineering. Further ablations on our pseudo-labels and model are pro-
vided in B and C, respectively, including fine-grained, per-class results
(D) and detailed statistics on the generated pseudo-labels (B.1) and time
and compute analysis for pseudo-labeling (B.2). We conclude with a dis-
cussion on detailed qualitative results in E.

A Implementation Details

A.1 Pseudo-label Engine

This section details the overview of our pseudo-labeling procedure (Sec. 3.3 of the
main paper). We detail our pseudo-label generation steps in Algorithm 1. As input, we
assume a sequence of multi-modal data that consists of k images It,k ∈ RW×H×3 (one
per camera view, per frame t, t ∈ 1, . . . , T), Lidar point clouds Pt ∈ RN×4, and image
and camera-to-Lidar calibration. The output is pairs of Lidar segmentation masks
m̃t ∈ {0, 1}N and corresponding CLIP feature tokens ft ∈ R768, t ∈ 1, . . . , T .

Mask generation. We start by generating an overlapping set of segmentation masks
for each image (camera view) (Algorithm 1, L6) using Segment Anything (SAM) foun-
dation model [31]. To generate masks, we utilize parameters, as described in Tab. A.1.
This step yields 171 masks per image on average. We then flatten SAM’s output
mask hierarchy by non-maxima suppression (NMS) with a small overlap threshold
(Algorithm 1, L7, govern by NMS IoU threshold in Tab. A.1) to obtain a small, non-
overlapping set of masks per-scan (45 on average after flatening). This way, we obtain
a set of non-overlapping binary masks mk

t ∈ {0, 1}W×H for each camera view k with
an image plane of size W ×H.

In practice, during mask suppression, we sort masks based on the mask area (rather
than score, usually done in NMS) – this criterion favors objects over their parts and
subparts. As can be seen in Tab. B.3, this approach (NMS area) performs significantly
better as compared to objectness score-based suppression (NMS score), which may
favor object parts over objects. We visualize the flattened segmentation masks in images
in Fig. E.3 (SemanticKITTI) and Fig. E.4 (nuScenes).

CLIP image token generation. We proceed by generating localized CLIP [67]
image feature tokens fk

t ∈ R768 for each binary mask mk
t (Algorithm 1, L8). To ob-

tain image tokens for a masked region of the input image, we utilize MaskCLIP [16]
and their relative mask attention in the CLIP image encoder feature space. The orig-
inal MaskCLIP pipeline forwards the entire image and all masks at once. For our use
case, we observed better per-mask classification results by generating image tokens
for each mask separately. To this end, we forward individual image crops. In Fig. E.3
and Fig. E.4, we visualize for each generated mask in the image the most-likely class,
assigned using the generated CLIP token (according to the class vocabularies, as de-
tailed in Tab. E.1). Importantly, we report class names only for visualization purposes

Segment Anything in Lidar 23

in Fig. E.3, Fig. E.4, and Fig. E.5. We never classify segments in the image domain but
merely distill CLIP image feature tokens to Lidar to facilitate zero-shot classification
during inference where we do not use any image features.

Image-to-Lidar unprojection. From the Lidar perspective, we unproject each im-
age mask mk

t,i ∈ {0, 1}W×H to a binary Lidar segmentation mask m̃k
t,i ∈ {0, 1}N by

transforming the respective camera coordinate frame to the Lidar space (Algorithm 1,
L9–L10). The unprojection yields pairs {m̃k

t , f
k
t } of Lidar masks and their correspond-

ing CLIP features w.r.t. camera k. On average, from 45 masks generated in images, 39
are transferred to the Lidar domain – the rest are either too small or not supported
by Lidar measurements (due to signal sparsity or lack of Lidar coverage). We visual-
ize masks, unprojected from a single camera to Lidar in the middle row of Fig. E.6
(SemanticKITTI).

We then insert these masks to the output sets m̃t, ft as follows. To all masks in
m̃k

t that do not overlap significantly overlap with masks in m̃t (Tab. A.1, multi-view
IoU threshold), we assign a new ID, and insert masks and their corresponding CLIP
features to the output sets m̃t, ft. For masks whose overlap threshold exceeds this limit,
we update existing masks with a union of the two, and the feature with the average.
We visualize masks, unprojected to Lidar from several views, followed by fusion, in the
middle row of Fig. E.7 (nuScenes).

Refinement via clustering. Finally, we improve our pseudo-label quality by creating
an ensemble of DBSCAN [17] clusters m̃DBSCAN

t ∈ {0, 1}N , obtained by varying the
density thresholds (Tab. A.1, DBSCAN density thresholds) to compensate for varying
density in Lidar point clouds. We replace each m̃i ∈ m̃t with its best-matching m̃l ∈
m̃DBSCAN

t in case their IoU exceeds a minimal overlap threshold (Tab. A.1, DBSCAN
IoU overlap threshold) and retain the original mask otherwise to obtain a refined set
of pseudo-labels that retain their original cardinality and associated CLIP features.

DBSCAN clustering implementation. To create the ensemble of DBSCAN clus-
ters m̃DBSCAN

t , we first perform geometric plane fitting and remove ground points (to
estimate the ground points, we use [34] and its publicly-available implementation). We
then perform DBSCAN on the ground-filtered point clouds using six density thresh-
olds (reported in Tab. A.1, DBSCAN IoU overlap threshold). This leads to a large
set of (overlapping) segmentation masks, induced by the estimated point clusters (in
SemanticKITTI, 5, 413 on average per scan)

In Tab. B.3, we report two alternatives. Firstly, rather than using DBSCAN, we
perform erosion in the image domain to minimize the “edge bleeding” artifacts. As can
be seen, this variant decreases the PQ score (46.0 to 42.2). Second, rather than replac-
ing segments with DBSCAN (DBSCAN replace), we filter the pool of SAM-generated
segments, only retaining those that have a sufficient overlap (in terms of intersection-
over-union), (DBSCAN filter). While this variant improves PQ for things classes, it
significantly reduces PQ for stuff classes, leading to overall lower performance com-
pared to the replace variant (46.7 PQ for filter vs. 48.7 PQ for replace).

Parameter tuning. We tune all hyperparameters on a subset of 40 Lidar scans of
SemanticKITTI validation set (we sample every 100th scan). We perform no parameter
tuning for nuScenes.

24 A. Ošep et al.

Algorithm 1 Pseudo-label Engine
Require: Lidar point clouds Pt, k camera views It,k, k camera calibrations ck, t ∈

1, . . . , T
Ensure: {m̃t, ft}, t ∈ 1, . . . , T // Lidar segmentation masks and corresponding CLIP

image feature tokens.
1: for each timestamp t do
2: Pt ← load_lidar(t)
3: m̃t = ∅, ft = ∅
4: m̃DBSCAN

t ← DBSCAN_ensamble(Pt) // Generate (overlapping) Lidar mask
ensemble

5: for each camera k do
6: It,k ← load_image(t, k)
7: mk

t ← SAM(It,k) // Generate masks in image k
8: mk

t ← NMS(mk
t) // Apply Non-Maximum Suppression (NMS) to masks

9: fk
t ←MaskCLIP(It,k, mk

t) // Obtain localized CLIP features for each mask
10: m̃k

t ← label_point_cloud (Pt,k,m
k
t , ck) // Generate segmentation pseudo-

labels w.r.t. camera k
11: m̃k

t ← replace(m̃k
t , m̃

DBSCAN
t) // Replace with sufficiently overlapping DB-

SCAN masks
12: {m̃t, ft} ← insert_or_merge(m̃t, ft, m̃

k
t , fk

t) // Cross-camera fusion: Insert
new or merge with existing

13: end for
14: end for

A.2 Zero-shot Model

We use our SAL model, trained using labels generated by the pseudo-label engine (Ap-
pendix A.1), to segment and classify any object. The model implements a Transformer
decoder architecture and adds a CLIP token prediction head (see Fig. A.1). In con-
trast to MaskPLS [45], our decoder operates not in point but voxel space and only on
a single backbone feature scale. These adaptations obtained empirically better results
from an overall more lightweight model. As it is common for Transformer decoders, the
computation of its loss LSAL relies on a bipartite cost matching between predictions and
(pseudo-)labels. Empirically, we obtain better results if this matching only relies on the
class-agnostic segmentation and does not incorporate the image token prediction as an
additional cost. Unlike [45], we train all models from scratch and do not initialize our
backbone with SegContrast [54]. In Tab. A.1, we highlight hyperparameter choices that
deviate from the default setup in [45].

The overlap threshold filters segments during inference. Since the segmentation head
predicts binary masks per query, the resulting segments are potentially overlapping.
To flatten the output and obtain panoptic segmentation results, overlapping points
are assigned based on probability. If a percentage of points are assigned to another
segment, the overlap threshold removes the segment entirely from the output. Training
on partial and noisy pseudo-labels increases the amount of overlap during inference,
in particular, for areas that are out of the camera frustum(s) and hence not labeled in
the training data. Deactivating the overlap filter entirely yields the best results for our
SAL model.

Segment Anything in Lidar 25

Table A.1: SAL hyperparameters. We show parameters for both components of
our framework: (i) SAM model [31], which we use to generate segmentation masks in
images; (ii) the pseudo-label generation engine and (iii) our zero-shot model. For the
latter, we only highlight parameters that deviate from [45].

Parameter Value

SAM [31]

Model sam_vit_h_4b8939
Inference POINTS_PER_SIDE 32
Inference PRED_IOU_THRESH 0.84
Inference STABILITY_SCORE_THRESH 0.86
Inference MIN_MASK_REGION_AREA 100

Pseudo-label engine

NMS IoU threshold 0.01
Multi-view IoU threshold 0.01
DBSCAN IoU overlap threshold 0.5
DBSCAN density thresholds (1.2488, 0.8136, 0.6952,

0.594, 0.4353, 0.3221)

Zero-shot model

GPUs 8 × 32GB (V100)
Batch size 24 (3 per GPU)
Learning rate (LR) 0.0003
Number of epochs 30
LR drop 15
Number of queries 300
Overlap threshold 0.0
Loss weights 2.0, 5.0, 5.0, 5.0, 2.0

The loss weights balance each component of our full model loss:

LSAL = Lobj + Lmask + Ldice

+ Ltoken + Ltoken_aux.
(2)

The Ltoken_aux is an auxiliary segmentation loss as applied in [45]. This loss com-
putes the semantic segmentation quality not for the decoder queries but based on the
backbone features alone. To this end, a per-point semantic segmentation head is added
after the backbone. In contrast to [45], our head regresses a token per-point and not
class per point. This auxiliary head is only added for training and discarded during
inference. All of our trainings apply common spatial augmentations, including random
rotations, flipping, scaling, and translations.

A.3 Text Prompt Engineering

To perform zero-shot classification within a pre-defined class vocabulary, we comple-
ment and enrich the otherwise ambiguous and uninformative class names. As shown
in Tab. E.1, each class is predictable not only by its own name but a set of additional
prompts. In particular, all other-X classes are ambiguous prompts. The otherness only
works in a fully supervised setting where a model can learn to predict, for example,
all vehicles except the types already covered by other classes. In our case, we must
directly prompt for other vehicle types, such as trailer, bus, tram, or train. This
problem could also be solved by adding negations/exclusions to prompts. However,
this approach did not yield the desired outcome in our experiments. We apply the
same set of super classes for SemanticKITTI [6] and nuScenes [18] and merge their

26 A. Ošep et al.

SAL Zero-Shot Model

Text Prompts

1. car
2. person
3. road
…
C. traffic sign

InstancesLidar Point Cloud

Object Queries

Instance DecoderBackbone
Objectness

CLIP token

Mask

… …

Semantics

…
CLIP

Fig.A.1: SAL zero-shot model. Our model takes Lidar point clouds and text prompts
as inputs. Its architecture relies on a 3D sparse-convolutional Minkowski backbone [12]
followed by a Transformer decoder for object instance segmentation. The decoder com-
putes cross-attention between object queries and backbone features. Three task heads
predict objectness scores, segmentation masks, and CLIP tokens for each query. Once
trained, we forward the dataset class vocabulary through the CLIP text encoder and
perform zero-shot classification via matching with predicted CLIP tokens. The model
requires no retraining for different vocabularies.

respective default class prompts. Furthermore, we follow [67] and wrap every prompt
into a list of full-sentence templates. This results in text prompts like a photo of a
car, which better align with the image caption training data of the CLIP text encoder.
In Appendix C.1, we show additional ablations on the aforementioned text prompt
engineering.

For panoptic segmentation outputs, every point is classified to one dataset vocabu-
lary class. To avoid classifying all segments to the same class when given a single text
prompt, we append a second background prompt to the prompt set. More specifically,
all predicted CLIP tokens are prompted with the target text and the word other. Em-
pirically, we observed that this broad term reliably matches to all objects unless the
actual text prompt, e.g ., fire hydrant, is being segmented.

A.4 How to Train on Partial Labels?

Pseudo-labels provide only partial supervision within the camera frustum (see Fig. A.2a),
leaving the majority of Lidar points unlabeled (see Tab. B.1). How can we train SAL
with such partial supervision?

Ignore unlabeled region + standard data augmentations. During training,
we remove all unlabeled points from the point cloud. Otherwise, the Lobj loss would
penalize any segmentation in these regions as a false positive, thereby teaching the
model to ignore them entirely. As visualized in Fig. A.2a and quantified in Tab. B.1,
the 360◦ Lidar label coverage is particularly low for single camera setups, as in Se-
manticKITTI [6].

FrankenFrustum. To generalize to full clouds during inference, we propose a sim-
ple but very effective FrankenFrustum augmentation (Fig. A.2b). It mimics full point
clouds during training by randomly removing unlabeled points and replicating labeled
frustum regions around the vertical axis. This augmentation does not increase the over-

Segment Anything in Lidar 27

Table A.2: CLIP token distillation and text prompt engineering. To evalu-
ate our token prediction, we prompt the SemanticKITTI class vocabulary to generate
labeled training data and train a non-zero-shot model (row 1). Furthermore, we demon-
strate the insufficiency of vanilla class names (car) as text prompts and the boost from
engineering a rich set of terms (car, jeep, SUV, van) as explained in Appendix A.3.

Text prompt
engineering Ltoken PQ RQ SQ mIoU

Default classes

× 25.1 33.5 68.4 25.9
× 20.6 27.1 65.2 20.9

× × 24.8 32.3 66.8 29.7

Super classes

× 27.4 33.8 71.8 24.9
× × 48.5 59.4 78.8 52.8

(a) Partial pseudo-labels (b) FrankenFrustum

Fig.A.2: Training on partial labels. Unprojecting image-based pseudo labels re-
sults in a partially (pseudo) labeled point cloud (Fig. A.2a). We construct supervisory
signal by concatenating multiple partially labeled point clouds (Fig. A.2b).

all label coverage. However, our ablations in the main paper (Sec. 4.2, Tab. 1) show its
effectiveness in reducing the domain gap between training and inference input clouds.

B Pseudo-label Analysis

B.1 Pseudo-label Statistics

Point coverage. As shown in Tab. B.1, the single-camera setup of Semantic-KITTI [6]
allows us to label a significantly smaller portion of Lidar point clouds (14%) compared
to GT labels (98%). Interestingly, even for nuScenes dataset [18], which provides a setup
with five cameras and 360◦ view coverage, pseudo-labels cover only 48% of all points.
Furthermore, we quantify pseudo-label coverage on SemanticKITTI when filtering all
points outside of the camera frustum. This leads to coverage of 89%. The remaining
missing labels can be explained by errors committed by our image-based segmentation
foundation model, SAM [31]. This analysis confirms that even when utilizing strong
foundation models, image-to-Lidar distillation remains a challenging problem.

Things vs. stuff. Furthermore, the segment anything philosophy transferred from
SAM [31] to our pseudo-labels yields a significantly larger number of instances per

28 A. Ošep et al.

Table B.1: Pseudo-label statistics. We outline the label coverage of point clouds,
the total, max, and mean number of instances per scan, and the ratio of things/stuff
instances on the full point cloud and point cloud areas that overlap with the cam-
era view frustum (Filter Frustum). As can be seen, due to the single-camera setup,
pseudo-label coverage in SemanticKITTI [6] is very low (14% of points). Even though
nuScenes [18] dataset provides 360◦ view coverage, only 48% are labeled due to blind
spots. Even when only retaining points, that overlap with the camera view frustum
(SemanticKITTI, Filter Frustum), we observe coverage of 89%. This can be explained
by mistakes (e.g ., false negatives) committed by our segmentation foundation model
(SAM [31]).

Label Filter
Frustum

Label
coverage

Instances
Total Max Mean Things Stuff #things

#stuff

SemanticKITTI [6]

GT 98% 372478 65 19 54% 46% 0.84
Pseudo 14% 767450 122 40 13% 87% 0.15

GT × 98% 224104 39 11 32% 68% 0.47
Pseudo × 89% 756203 120 39 13% 87% 0.15

nuScenes [18]

GT 70% 818971 119 29 63% 37% 1.70
Pseudo 48% 5594800 647 198 15% 84% 0.18

scan (19 GT vs. 40 pseudo on average). This transfer is particularly notable in the
shift of ratios between things and stuff instances (0.84 vs. 0.14 for GT and pseudo-
labels, respectively), as existing datasets (e.g ., SemanticKITTI and nuScenes) merge
individual instances of classes such as pole or trees into single instances. By contrast,
our pseudo-labels provide a finer-grained segmentation of object instances, as needed
for learning to segment a variety of objects.

Fine-grained analysis. In Tab. B.2, we additionally report per-class label statistics
for train and validation splits for SemanticKITTI dataset [6]. As can be seen, the label
coverage is consistent in train and val splits (97% GT vs. 14% pseudo-labels in val,
and 98% GT vs. 15% pseudo-labels in train). Overall, the max. number of instances
is larger in the train set (65 GT & 122 pseudo) as compared to the validation set
(53 GT & 82 pseudo), whereas the average number of instances remains consistent
for pseudo-labels, while for GT labels are lower in the train (19 GT & 40 pseudo)
compared to val (24 GT & 41 pseudo). The larger number of instances reflect the most
frequent classes: on the train set (Filter Frustum), the highest percentage of instances
are due to vegetation (27.1%), building (16.9%), and road (13.4%) classes. As can be
confirmed in Fig. E.3 and Fig. E.4, our pseudo-labels indeed often localize individual
trees, bushes, and buildings, leading to a large number of overall instances for these
classes.

B.2 Pseudo-label Timing & Effort Analysis

We report information and statistics on three datasets (SemanticKITTI [6], Panoptic
nuScenes [18] and Waymo Open [75]) that we pseudo-label and use to train SAL, in
Tab. B.5. As can be seen, the processing time needed to process a single scan depends
on multiple dataset characteristics, such as the number of cameras. In the case of
the Waymo Open dataset, we pseudo-label every 10th scan, and we do not perform

Segment Anything in Lidar 29

Table B.2: Pseudo-label statistics per class on SemanticKITTI. We compare
ground truth label and pseudo-label statistics on SemanticKITTI [6] train and valida-
tion sets. Label coverage and instance class distributions are reported in percentage.
Due to camera visibility coverage, pseudo-labels cover a significantly smaller portion of
the dataset than GT labels. This is especially prominent in the SemanticKITTI dataset
(14% coverage). Pseudo-labels cover a significantly larger number of instances per scan
than GT labels (3× more when only compared in the camera view frustum), as needed
to learn to segment a large variety of objects. While GT labels treat stuff classes as a
“single instance,” our pseudo-labels hypothesize a variety of plausible segmentations of
stuff classes, leading to a higher percentage of stuff class labels. We use a semantic
oracle to report per-class statistics on pseudo-labels

Label C
ov

er
ag

e
(%

)

M
ax

/
A
vg

.
In

st
.

ca
r

bi
cy

cl
e

mo
to

rc
yc

le

tr
uc

k

ot
he

r-
ve

hi
cl

e

pe
rs

on

bi
cy

cl
is

t

mo
to

rc
yc

li
st

ro
ad

pa
rk

in
g

si
de

wa
lk

ot
he

r-
gr

ou
nd

bu
il

di
ng

fe
nc

e

ve
ge

ta
ti

on

tr
un

k

te
rr

ai
n

po
le

tr
af

fi
c-

si
gn

Full point cloud

V
al

GT 97 53/24 46.9 4.2 1.3 0.3 3.2 4.5 1.5 0.2 4.2 1.4 4.2 0.9 4.2 3.9 4.2 4.0 4.2 4.2 2.9
Pseudo 14 82/41 15.6 0.2 0.2 0.3 1.0 0.6 0.5 0.0 12.5 0.8 9.0 0.2 15.1 2.2 27.6 2.6 9.1 2.0 0.6

Camera view frustum

GT 97 27/13 31.4 2.2 0.8 0.2 1.9 2.8 1.3 0.1 7.3 1.9 7.3 0.5 6.7 5.2 7.3 6.3 6.9 6.8 3.1
Pseudo 88 81/41 15.6 0.2 0.2 0.3 1.0 0.6 0.5 0.0 12.5 0.8 9.0 0.2 15.0 2.2 27.6 2.6 9.1 2.0 0.6

Full point cloud

T
ra

in

GT 98 65/19 44.8 2.0 1.0 0.7 2.1 2.5 0.5 0.1 5.1 2.1 4.8 1.4 4.6 5.0 5.1 4.6 5.0 5.0 3.5
Pseudo 15 122/40 11.4 0.1 0.1 0.5 0.6 0.2 0.1 0.1 13.4 1.1 8.8 0.5 16.8 9.3 27.1 2.1 5.3 1.9 0.6

Camera view frustum

GT 98 39/11 27.4 1.0 0.6 0.5 1.1 1.3 0.3 0.2 8.5 2.6 8.0 1.2 6.8 7.7 8.5 5.8 7.4 7.7 3.2
Pseudo 89 120/39 11.4 0.1 0.1 0.5 0.6 0.2 0.1 0.1 13.4 1.1 8.8 0.5 16.9 9.3 27.1 2.1 5.3 1.9 0.6

DBSCAN refinement. The reason is two-fold: (i) we observe image-lidar calibration on
Waymo is more accurate compared to KITTI and nuScenes, and (ii) we save processing
effort/time to pseudo-label Waymo. Importantly, our pseudo-labeling setup is general:
it supports various sensory setups (single camera, multi-camera) and multiple Lidar
types and can cope well with datasets with different degrees of accuracy of the image-
lidar calibration/synchronization.

In Tab. B.6, we provide fine-grained per-scan timing analysis for SAL pseudo-
labeling engine. The most costly component is extracting image-level segmentation
masks using the segmentation foundation model (SAM [31]), which needs to be per-
formed, in general, for each camera.

B.3 Qualitative Analysis

Both SemanticKITTI [6] and nuScenes [18] do not provide ground truth annotations
in 2D. To illustrate the performance of the foundation models we utilize for pseudo-
labeling in the image domain, we visualize predicted masks and dataset class vocab-
ularies from SAM [31] and CLIP [67]. In Fig. E.3, we show the single (front) camera
view corresponding to the first scan of four different SemanticKITTI sequences. For

30 A. Ošep et al.

Table B.3: Segmentation pseudo-labels analysis. This table extends Tab. 4 from
the main paper with additional metrics and baselines. We report results on the Se-
manticKITTI validation set using the semantic oracle, as detailed in the main paper
(Sec. 4.1). We evaluate the region of the point cloud visible in the camera (Filter Frus-
tum).

Model PQ RQ SQ IoU PQTh RQTh SQTh PQSt RQSt SQSt

SAM (NMS area) 46.0 62.3 72.1 58.9 49.7 66.2 73.1 43.4 59.5 71.4
SAM (NMS score) 28.5 39.3 71.9 45.8 19.4 26.4 73.8 35.0 48.6 70.5

SAM+Erosion 42.2 58.6 69.4 55.9 45.6 62.3 70.0 39.6 55.9 69.0

SAM+DBS (filter) 46.7 56.3 70.3 45.8 76.8 85.5 89.4 24.8 35.1 56.4
SAM+DBS (replace) 48.7 64.8 73.7 59.8 53.1 69.2 75.1 45.4 61.6 72.7

SAL 70.7 85.6 81.9 79.7 75.4 87.1 86.4 67.3 84.4 78.7

Table B.4: Segmentation pseudo-labels ablation - per class. This table ex-
tends Tab. 4 from the main paper with per-class PQ scores. We report results on the
SemanticKITTI validation set using the semantic oracle, as detailed in the main pa-
per (Sec. 4.1). We evaluate the region of the point cloud visible in the camera (Filter
Frustum).

Model ca
r

bi
cy

cl
e

mo
to

rc
yc

le

tr
uc

k

ot
he

r-
ve

hi
cl

e

pe
rs

on

bi
cy

cl
is

t

mo
to

rc
yc

li
st

ro
ad

pa
rk

in
g

si
de

wa
lk

ot
he

r-
gr

ou
nd

bu
il

di
ng

fe
nc

e

ve
ge

ta
ti

on

tr
un

k

te
rr

ai
n

po
le

tr
af

fi
c-

si
gn

SAM (NMS area) 74.2 13.4 44.0 77.2 66.3 61.9 39.1 21.5 83.1 24.7 38.4 27.9 58.3 34.5 71.8 26.2 40.9 21.1 49.9
SAM (NMS score) 26.2 9.5 17.4 15.8 29.1 24.4 13.2 20.0 56.2 32.5 34.8 14.9 13.7 28.0 57.6 33.9 35.6 16.3 62.0

SAM+Erosion 72.2 5.6 45.0 78.4 65.4 55.1 22.9 20.3 82.4 23.1 35.9 24.3 54.4 31.1 68.8 22.0 37.3 13.4 43.3

SAM+DBS (filter) 84.9 56.7 78.5 90.4 78.8 75.0 85.9 64.1 26.9 0.0 0.0 0.8 51.3 23.3 43.6 37.3 1.1 32.2 56.5
SAM+DBS (replace) 75.8 17.5 50.0 78.2 67.3 66.9 42.9 26.4 83.1 24.7 38.4 28.0 62.2 36.2 71.5 33.5 40.9 27.0 54.4

SAL 90.7 65.8 79.9 59.5 78.1 89.8 65.4 74.1 92.8 24.8 74.2 47.4 82.4 59.5 85.0 73.3 60.7 75.3 65.5

nuScenes Fig. E.4 and Waymo Open, we focus on the first scan of a single sequence
and show all camera views. As can be seen, in all datasets, the output contains many
correct segmentations and classifications, e.g ., for the road, car, or vegetation classes.
Moreover, the class-agnostic SAM masks introduce many smaller instances by segment-
ing individual road markings. However, without any corresponding points in the cloud,
such segments are filtered by the unprojection/transfer to Lidar.

While the SAM masks are generally correct, noisy CLIP predictions confirm there
is room for improvement. For example, the sky is always misclassified since it is not
part of the class vocabulary. As shown in the main paper (Tab. 3), the distillation of
SAM and CLIP to 3D yields an analogous behavior of our SAL model. It should be
noted that the clip predictions shown in Fig. E.3 and Fig. E.4 are only for visualization
purposes. We do not directly transfer class labels to 3D, but only the CLIP embeddings.

B.4 Pseudo-label Quality

We additionally report per-class pseudo-label results in Tab. B.4. As can be seen,
DBSCAN replace consistently improves over tuned SAM variant on things classes
(e.g ., for car class, +1.6 PQ, person class +4.8 PQ). While DBSCAN filter leads
to remarkable improvements on some classes (e.g ., for car +10.7, bicycle +43.2),

Segment Anything in Lidar 31

Table B.5: Dataset pseudo-labeling analysis. We report dataset information and
statistics, along with pseudo-labeling effort and time analysis. We note that in Se-
manticKITTI, we have four cameras in total. However, only one is used for pseudo-
labeling, as all cameras have (roughly) the same field of view. We report the total
number of scans, as well as per-scan processing time (NVIDIA A100D-80C GPU).
Processing time depends on the number of cameras, as well as individual dataset char-
acteristics (such as camera resolution, point cloud size, density, etc.). Finally, we report
the total time needed to pseudo-label a dataset if processed sequentially (in practice,
we can pseudo-label datasets in 1-3 days using a compute cluster). We note that in the
case of Waymo, due to sheer size, we (i) pseudo-label only 10% of point clouds and (ii)
skip the postprocessing with DBSCAN.

Dataset # cam.
Cam.

cov. (◦) Lidar
scans

Total / Pseudo-lab.
Time (s)
Per scan

Time (days)
Total

SemanticKITTI 1 90 Velodyne HDL-64E 43592/43592 32 16
Panoptic nuScenes 6 360 Velodyne HDL-32E 40157/40157 129 59
Waymo Open 5 270 Waymo Proprietary 227101/22710 92 24

Table B.6: Per-scan pseudo-labeling timing analysis. We report fine-grained
per-dataset timing analysis for our pseudo-labeling system. In particular, we report in-
dividual timings for core components of SAL pseudo-label engine: (i) running segmenta-
tion foundation model (SAM [31]) in the image domain, (ii) extracting corresponding
CLIP features [16, 67], (iii) image-to-Lidar unprojection, and finally, (iv) DBSCAN
refinement. As can be seen, the most costly step is due to SAM; this step could be
reduced in the future using newer and more time-efficient variants of SAM. DBSCAN
is the second bottleneck, however, it is only executed once per point cloud, and does
not depend on the number of cameras. The analysis was conducted using NVIDIA
A100D-80C GPU.

Dataset # cam. Time (s)
Scan SAM CLIP Unprojection DBSCAN

SemanticKITTI 1 31.9 6.7 1.8 0.9 22.2
Panoptic nuScenes 6 129.2 56.4 14.8 14.34 41.1
Waymo Open 5 92 56.1 16.0 17.5 –

it severely degrades stuff classes (e.g ., −39.8 for terrain class). On the other hand,
DBSCAN replace either does not affect stuff classes or leads to improvements (e.g .,
building +3.9).

C Model Ablations

C.1 Zero-shot Classification

The SAL model performs zero-shot classification by matching text prompts with pre-
dicted CLIP tokens. To predict tokens only with Lidar input, our label engine generates
pairs of Lidar segments and corresponding CLIP image tokens. Training on these pairs
distills the CLIP image encoder into our model. The first row of Tab. A.2 demonstrates
a different approach where we train on pairs of Lidar segments and class labels obtained
by directly prompting the CLIP image encoder. Examples of these labels are visualized
in Fig. E.3. The difference (−1.5) between the first and third row in Tab. A.2 indicates
the performance drop of the distillation into our model. This further demonstrates the

32 A. Ošep et al.

Table C.1: SAL per class PQ results on the SemanticKITTI and nuScenes
validation sets. We report metrics for zero-shot (ZS) and linear probing (LP) super-
vision.

SemanticKITTI [6]

Su
p
er

vi
si

on

al
l

ca
r

bi
cy

cl
e

mo
to

rc
yc

le

tr
uc

k

ot
he

r-
ve

hi
cl

e

pe
rs

on

bi
cy

cl
is

t

mo
to

rc
yc

li
st

ro
ad

pa
rk

in
g

si
de

wa
lk

ot
he

r-
gr

ou
nd

bu
il

di
ng

fe
nc

e

ve
ge

ta
ti

on

tr
un

k

te
rr

ai
n

po
le

tr
af

fi
c-

si
gn

ZS 24.8 82.3 22.3 10.9 9.5 9.2 5.4 0.0 0.0 67.0 0.2 27.6 0.1 33.2 3.6 80.7 16.9 32.4 45.8 24.9
LP 33.1 78.0 1.5 25.0 25.8 20.3 41.5 62.6 0.0 79.7 17.6 33.2 0.0 74.2 13.3 74.0 21.5 34.4 32.9 9.8

nuScenes [18]

al
l

ba
rr

ie
r

bi
cy

cl
e

bu
s

ca
r

co
ns

tr
uc

ti
on

_v
eh

ic
le

mo
to

rc
yc

le

pe
de

st
ri

an

tr
af

fi
c_

co
ne

tr
ai

le
r

tr
uc

k

dr
iv

ea
bl

e_
su

rf
ac

e

ot
he

r_
fl

at

si
de

wa
lk

te
rr

ai
n

ma
nm

ad
e

ve
ge

ta
ti

on

ZS 38.4 0.7 53.4 46.6 82.2 17.9 52.5 50.6 35.4 30.0 47.2 57.6 0.1 13.5 29.2 29.7 67.5
LP 40.1 3.2 17.6 53.8 77.3 15.8 40.8 83.2 27.2 28.2 47.7 67.1 23.1 10.2 15.8 64.2 65.8

effectiveness of our framework. In particular, our insufficiencies with respect to zero-
shot classification are not caused by our design choices in 3D but merely a reflection
of the same limitations in the image domain.

Text prompt engineering. The CLIP tokens predicted by our model can be prompted
with any arbitrary text. This allows our model to classify potentially any object. The
text prompts must adhere to the respective class vocabulary to perform zero-shot clas-
sification on an annotated dataset. In Tab. A.2, we demonstrate the performance boost
from engineering the set of text prompts, e.g ., by adding similar class terms to each
class set (see Tab. E.1). In particular, for super-classes, where we add all default class
names to the respective super set, our engineering yields a huge gain of +23.1. This is
due to the ambiguous nature of the super class names, e.g ., object or structure.

D Per-class Results

In Tab. C.1, we report per-class PQ results of the SAL model on SemanticKITTI [6]
and nuScenes [18]. These results correspond to the default class evaluations shown in
the main paper (Tab. 5). For other-X classes which are defined in delimitation to other
classes, e.g ., other-vehicle than car, our zero-shot model suffers from the ambiguous
class prompt (see Appendix A.3). Linear probing improves across most classes except,
for example, bicycle. The performance drop can be explained by the different object-
notion between our pseudo and the ground truth labels.

E Qualitative Results

Class-agnostic segmentation. In Fig. E.2, we provide qualitative results for class-
agnostic segmentation on Waymo Open dataset. Colors encode identities (IDs) of in-
dividual instances. For reference, we provide images of corresponding camera views,

Segment Anything in Lidar 33

Fig. E.1: Class-Agnostic Segmentation on Waymo Open [75]. We visually com-
pare class-agnostic segmentation results. Colors encode object instance IDs. Left : base-
line (SAM [31], unprojected to Lidar), and, right, SAL. As can be seen, the baseline
that directly lifts SAM masks to Lidar is limited to 270◦ field of view, which overlaps
with the camera ring. By contrast, SAL segments the full Lidar point cloud and is not
limited by the camera coverage. Zoomed-in regions show that the baseline is sensitive
to edge bleeding (e.g ., see pedestrian and traffic sign masks, partially projected
to the blue wall). SAL, by contrast, distills noisy SAM masks into crisp segmentation
masks.

even though these are not used during the inference. As can be seen, SAL learns
to segment full point clouds, things and stuff classes, even though supervision is
only partial. Interestingly, SAL segments well large structures (often classified as stuff
classes), such as building, road, and sidewalk. In addition to canonical things classes,
such as car, van, bus, and pedestrian, SAL also learns a variety of classes, that are
not covered in class vocabularies of existing datasets of Lidar Panoptic Segmenta-
tion (SemanticKITTI [6] and nuScenes [18]). Examples of such classes, segmented in
Fig. E.2, are parking meters, potted trees, rooftop ladder, water hydrant, post
box, traffic cone and traffic barrier.

In Fig. E.1, we contrast a baseline that simply lifts SAM [29] masks to Lidar
(this baseline is evaluated in Tab. B.3, as well as Tab. 4 in the main paper). As can
be seen in Fig. E.1, left, Waymo Open provides 270◦ coverage (four camera views),
leaving a “blind spot” behind the vehicle. This is an inherent limitation of the baseline
that requires camera views for the inference. By contrast, SAL (Fig. E.1, right) learns
to distill such image-generated pseudo-labels to a full Lidar Panoptic Segmentation
model. Therefore, it segments full 360◦ point clouds and does not require camera views
during the inference (only during the model training).

For further insights, we zoom in on certain regions of point clouds. As can be seen in
Fig. E.1, left, masks transferred from images to Lidar often lead to bleeding edges (e.g .,
red and blue pedestrians “bleed” to the pale blue wall), and thinner structures are often
not segmented well due to non-perfect calibration and rolling shutter nature of the Lidar
sensor. While such issues can be (partially) mitigated by postprocessing via density-
based clustering (we refer to Tab. B.3 and Tab. 4 in the main paper for quantitative
analysis), we show in Fig. E.1, right, results obtained with SAL model, trained directly
on SAM-transferred masks (without DBSCAN as postprocessing). Remarkably, the
distilled model does not suffer from these artifacts.

34 A. Ošep et al.

(a) Front-left camera (b) Front camera (c) Front-right camera

Fig. E.2: Class-agnostic segmentation on Waymo Open [75] from first-person
perspective. We visually outline the Lidar point cloud, where points are colored
according to estimated instance IDs, estimated by SAL. We show corresponding camera
views (not used for inference) for reference. As can be seen, SAL accurately segments
a large variety of objects, including parking meters, potted trees (pots as well as
trees), rooftop ladder, water hydrant, post box, traffic cone, traffic barrier,
and more. Canonical objects, such as car, van, bus, and pedestrian are segmented as
well. This class-agnostic segmentation is a basis for zero-shot classification.

Zero-shot prompting. In Fig. E.9, we highlight the capability of SAL for prompting
specific semantic classes. On the left side, we visualize class-agnostic segmentations
of point clouds, and on the right, we highlight prompts and highlight segmented re-
gions. We show two things classes (tram and trash bin) and two stuff lasses (store
front and curb). A basis for such zero-shot prompting is our class-agnostic segmen-
tation model, which segments input point clouds into a set of segmented objects. SAL
model predicts for each segmented object CLIP feature token that we use for zero-shot
prompting (for details, we refer to Sec. 3 of the main paper).

Zero-shot semantic segmentation. To provide further insight, we illustrate seman-
tic ground truth labels, SAL pseudo-labels, that we use to train the SAL model, and SAL
model outputs for SemanticKITTI [6] (Fig. E.6), nuScenes [18] (Fig. E.7) and Waymo
Open [75] datasets.

For ground truth and model outputs, we visualize semantic classes. Since pseudo-
labels are class-agnostic, colors encode object instance IDs in the middle column. As can

Segment Anything in Lidar 35

be seen in [6], the single-camera setup in SemanticKITTI provides limited supervision
only in the frustum. Across all shown output examples, the segmentation of things
and stuff objects is close to the expected ground truth.

36 A. Ošep et al.

front

front

front

front

Fig. E.3: SAM mask and CLIP vocabulary predictions - SemanticKITTI.
We show the front camera view of the first scan of the 00, 01, 02, and 08 se-
quences. We obtain masks with SAM [31] and compute per-mask CLIP [67] image
tokens with MaskCLIP [16]. To visualize classes, we prompt generated tokens with
SemanticKITTI [6] class vocabulary. These classes are not transferred to Lidar. Our
pseudo-labels contain masks and image tokens, no explicit class labels. Instances of the
same class are indicated in different tones of the same color.

Segment Anything in Lidar 37

front back

front left front right

back left back right

Fig. E.4: SAM mask and CLIP vocabulary predictions - nuScenes. We show
all six camera views of the first scan of the 0001 sequence. We obtain masks with
SAM [31] and compute per-mask CLIP image tokens with MaskCLIP [16]. To visualize
classes, we prompt generated tokens with nuScenes [18] class vocabulary. These classes
are not transferred to Lidar. Our pseudo-labels contain masks and image tokens, no
explicit class labels. Instances of the same class are indicated in different tones of the
same color.

38 A. Ošep et al.

front

front left front right

left

right

Fig. E.5: SAM mask and CLIP vocabulary predictions - Waymo. We show
all five camera views of the first frame of sequence emph008 of the test set. We obtain
masks with SAM [31] and compute per-mask CLIP image tokens with MaskCLIP [16].
Sine WAYMO has no panoptic ground truth, we visualize classes by prompting gener-
ated tokens with the nuScenes [18] class vocabulary. These classes are not transferred
to Lidar. Our pseudo-labels contain masks and image tokens, no explicit class labels.
Instances of the same class are indicated in different tones of the same color.

Segment Anything in Lidar 39

Table E.1: Dataset vocabulary text prompts. To circumvent ambiguous or un-
informative class names, we prompt each class with a set of possible text prompts.
Furthermore, we follow [67] and wrap each class prompt in full-sentence templates.

Class Text prompts

SemanticKITTI [6]

car car, jeep, SUV, van
bicycle bicycle, bike
motorcycle motorcycle, moped
truck truck, pickup truck
other-vehicle other-vehicle, caravan, trailer, bus, tram, train
person person, pedestrian
bicyclist bicyclist, bicycle rider
motorcyclist motorcyclist, motorcycle rider
road road, lane
parking parking, parking lot
sidewalk sidewalk, curb, driveway
other-ground other-ground, traffic island
building building, garage, wall, window, stair
fence fence, separator, small wall, crash barrier
vegetation vegetation, bush, shrub, foliage, treetop
trunk trunk, tree trunk
terrain terrain, gras, soil
pole pole, lamp post, traffic-sign pole
traffic-sign traffic-sign, traffic-sign mounting

nuScenes [18]

bicycle bicycle, bike
bus bus
car car, jeep, SUV, van
construction vehicle construction vehicle, crane, excavator
motorcycle motorcycle, moped
pedestrian pedestrian, person
trailer trailer
truck truck, pickup truck
barrier barrier, fence, separator, small wall, crash barrier
traffic cone traffic cone
driveable surface driveable surface, road, service lanes, bike lanes
flat surface flat surface, ground
sidewalk sidewalk, curbs, driveways
terrain terrain, gras, soil
manmade manmade, building, garage, walls, windows, stairs, bench
vegetation vegetation, bush, shrub, foliage, treetop

Super classes

vehicle
vehicle, car, truck, bicycle, motorcycle, other-vehicle, jeep, SUV, van,
bike, moped, pickup truck, caravan, trailer, bus, tram, train,
construction vehicle, crane, excavator

human
human, person, bicyclist, motorcyclist, pedestrian, bicycle rider,
motorcycle rider

ground
ground, road, sidewalk, parking, other-ground, driveable area,
service lane, bike lane, parking lot, curb, driveway, traffic island

structure structure, building, garage, wall, window, stair

nature
nature, vegetation, trunk, terrain, bush, shrub, foliage, treetop,
tree trunk, gras, soil

object
object, fence, pole, traffic-sign, lamp post, traffic-sign pole,
traffic-sign mounting, separator, small wall, crash barrier,
traffic cone, bench

40 A. Ošep et al.

GT Pseudo Output

Fig. E.6: Qualitative results for SemanticKITTI. We visualize ground truth
(GT), pseudo labels, and our model output for several scans of validation sequence 08
of SemanticKITTI [6]. While GT and our output display semantics, the class-agnostic
pseudo labels show instances.

Segment Anything in Lidar 41

GT Pseudo Output

Fig. E.7: Qualitative results for nuScenes. We visualize ground truth (GT),
pseudo labels, and our model output for the first scan of validation sequences 0003,
0013, 0015, 0017, 0035, and 0038 of nuScenes [18]. While GT and our output display
semantics, the class-agnostic pseudo labels show instances.

42 A. Ošep et al.

Pseudo Output

Fig. E.8: Qualitative results for Waymo. We visualize pseudo labels and our model
output for the first scan of test sequences 008, 024, and 032 of Waymo [75]. Waymo
does not provide panoptic ground truth labels. While our output displays semantics,
the class-agnostic pseudo labels show instances.

Segment Anything in Lidar 43

(a) Class-agnostic segmentation (b) Prompt: {tram}

(c) Class-agnostic segmentation (d) Prompt: {store front}

(e) Class-agnostic segmentation (f) Prompt: {trash bin}

(g) Class-agnostic segmentation (h) Prompt: {curb}

Fig. E.9: Zero-shot per-class prompting on Waymo Open [75]. SAL predicts a
set of object instances (left), along with their objectness scores and distilled CLIP [67]
features. We can use text prompts and query these instances for specific classes specified
as prompts. On the right, we highlight several such examples that are outside of class-
vocabularies of SemanticKITTI, nuScenes, and Waymo Open datasets. As can be seen
on the left, a basis for such zero-shot prompting is accurate and, importantly, diverse
class-agnostic segmentation.

	Better Call SAL: Towards Learning to Segment Anything in Lidar

