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Abstract

This report presents our Le3DE2E solution for unified
sensor-based detection, tracking, and forecasting in Argo-
verse Challenges at CVPR 2023 Workshop on Autonomous
Driving (WAD). We propose a unified network that incorpo-
rates three tasks including detection, tracking, and forecast-
ing. This solution adopts a strong Bird’s Eye View (BEV)
encoder with spatial and temporal fusion and generates uni-
fied representations for multi-tasks. The solution was tested
on the Argoverse 2 sensor dataset [8] to evaluate the detec-
tion, tracking, and forecasting of 26 object categories. We
achieve 1st place in Detection, Tracking, and Forecasting
on the E2E Forecasting track in Argoverse Challenges at
CVPR 2023 WAD.

1. Introduction
The challenge focuses on evaluating end-to-end percep-

tion tasks on detection, tracking, and multi-agent forecast-
ing on Argoverse 2 sensor dataset. The dataset provides
track annotations for 26 object categories. For testing, our
algorithm needs to be able to detect objects in the current
frame and forecast trajectories for the next 3 seconds. The
end-to-end task is different from the motion forecasting task
since the tracking ground truths are not provided.

2. Method
Motivated by UniAD [2], we propose an end-to-end

framework for detection, tracking, and forecasting. We fuse
the BEV features from LiDAR and multi-view cameras as
a unified representation for all three downstream tasks. HD
map is encoded as vectors to help with motion forecasting.
The system overview is shown in figure 1.

*Work done as an intern at Lenovo Research.

2.1. BEV Feature

For LiDAR point cloud, we employ a LIDAR BEV en-
coder based on SECOND [10] to generate LIDAR BEV
features Bl. For multi-view images, we adopt a spatio-
temporal transformer based on BEVFormer [3] to generate
BEV features from multi-view cameras Bc. The camera
BEV branch has two modules: the backbone network and
the BEV encoder.

The BEV features from LiDAR Bl and multi-view cam-
eras Bc are fused into one BEV feature by a spatial encoder
following BEVFusion [4]. The spatial encoder concate-
nates Bl and Bc and then reduces the feature dimensions
through a convolution layer. After the spatial fusion, his-
torical BEV features are fused with the current frame by
the spatial-temporal transformer in BEVformer [3]. The
spatial-temporal fused BEV feature is used as a 3D repre-
sentation and input to downstream heads.

2.2. Detector

The detector is based on Deformable DETR [9]. The
temporal fused BEV features are fed into the decoder as ob-
ject queries. The Deformable DETR head is used to predict
3D bounding boxes and velocity without Non-Maximum
Suppression (NMS). 3D box regression is supervised by us-
ing L1 loss. The detection queries capture the agent charac-
teristic by attending to the BEV features.

2.3. Tracker

The tracking is initialized by object queries from the de-
tector as the tracking candidate at each frame. While track
queries, which are based on MOTR [11], are used to as-
sociate track queries in the current frame and the previous
frame. The track queries which are matched with the history
frame aggregate temporal information in a self-attention
module until the agent disappears in a certain time period.



Figure 1. System overview. First, we extract BEV features from LiDAR point cloud and camera images separately. The LiDAR point
clouds of the current frame are voxelized and encoded to the BEV feature map by LiDAR backbone. Image features are extracted from
synchronized multi-view cameras by an image backbone and are encoded to a camera BEV feature by a transformer-based BEV encoder.
Second, spatial-fusion module fuses LiDAR and Camera BEV into a unified BEV representation. The historical frame BEV feature maps
are fused with the current frame by using a temporal encoder. Third, spatial-temporal fused BEV is fed into Detector which generates
detection bounding boxes. Tracker utilizes object queries from the detector to associate track queries between frames. Also, Motion Head
forecasts the future trajectories for each agent from Detector. In addition, HD Map is encoded to vectors and interacts with agents to help
with motion forecasting.

Team mAP F(↑) ADE(↓) FDE(↓)

dgist−cvlab 45.83 4.09 4.53
Host 4626 Team 14.51 5.10 7.32
Le3DE2E (Ours) 46.70 3.22 3.76

Table 1. Forecasting Leaderboard on End-to-End Forecasting Challenge

2.4. VecterMap Encoder

HD maps are typically represented by vectorized spatial
coordinates. To encode the information of lanes and pedes-
trian crossings, we adopt a vectorized encoding method
called VectorNet [1], which operates on the vectorized HD
maps to avoid lossy rendering and computationally inten-
sive ConvNet encoding steps. The map elements are en-
coded by cross-attention layers and represented as map
queries. We generate the position encoding with the center
of each vector. The map queries and the position encoding
are forwarded to Motion Head to help with motion forecast-
ing.

2.5. Motion Head

The motion head takes in the agent’s information from
the Detection and map information from Vector Map En-
coder. It then predicts the future trajectories for agents.
The transformer structure has been proven to be effective
in motion forecasting tasks in recent years. Thus we choose
MotionFormer from UniAD [2] as a motion baseline. The

motion head is a 3-layer transformer decoder and has BEV
queries generated by the BEV encoder, agent queries gener-
ated by Detection, and map queries encoded by VectorMap
as input. They interact with motion queries and help motion
forecasting.

2.6. Test Time Augmentation and Ensemble

During inference, we apply Test Time Augmentation
(TTA) to further improve the performance. Also, we use
NMS to merge the results of augmented input.

We use the Weighted Box Fusion (WBF) [7] to ensem-
ble multiple models with different training settings to im-
prove detection and forecasting prediction accuracy. For
E2E forecasting, we use a two-step ensemble procedure to
ensemble not only the detection bounding boxes but also fu-
ture trajectories. In step 1, we cluster the detection bound-
ing boxes according to the intersection-over-union (IoU). In
step 2, we cluster forecasting trajectories with L2 distances
and adaptively adjust the threshold based on the speed of
instances.



Team HOTA(↑) AMOTA(↑) MOTA(↑)

AIDrive (v0) 44.36 17.47 32.61
dgist−cvlab 41.49 7.88 17.97

Host 4626 Team 39.98 7.10 16.21
Le3DE2E (Ours) 56.19 19.53 39.34

Table 2. Tracking Leaderboard on End-to-End Forecasting Challenge

Team mCDS(↑) mAP(↑) mATE(↓) mASE(↓) mAOE(↓)

BEV (BEVFusion) 0.37 0.46 0.40 0.30 0.50
Detectors 0.34 0.42 0.39 0.30 0.50

AIDrive (Lv0) 0.27 0.35 0.45 0.33 0.84
Match (lt3d) 0.21 0.26 0.43 0.33 0.50

Host 75088 Team (CenterPoint) 0.14 0.18 0.49 0.34 0.72
zgzxy001 0.12 0.15 0.45 0.34 0.65

Le3DE2E (Ours) 0.39 0.48 0.41 0.31 0.47

Table 3. 3D Object Detection Leaderboard

3. Experiments
3.1. Dataset

The competition used the Argoverse 2 Sensor Dataset,
which consisted of 1000 scenes (750 for training, 150 for
validation, and 150 for testing) with a total of 4.2 hours
of driving data. The total dataset is extracted in the form
of 1 TB of data. Each vehicle log has a duration of ap-
proximately 15 seconds and includes an average of approx-
imately 150 LiDAR scans with 10 FPS LiDAR frames. The
dataset has 7 surrounding cameras with 20 FPS. For the E2E
Forecasting track, 1 keyframe is sampled in 2Hz from the
training, validation, and testing sets.

3.2. Evaluation Metrics

Detection. Argoverse [8] proposes a new metric Compos-
ite Detection Score (CDS) which simultaneously measures
precision, recall, object extent, translation error, and orien-
tation. The mean metrics are computed as an average of 26
different object categories.
Tracking. HOTA [5] is the key metric for the challenge,
while AMOTA and MOTA are also important metrics for
reference. HOTA explicitly balances the effect of perform-
ing accurate detection, association, and localization into
a single unified metric. MOTA combines false positives,
missed targets, and identifies switches to compute the track-
ing accuracy. AMOTA, similar to MOTA, is averaged over
all recall thresholds to consider the confidence of predicted
tracks.
Forecasting. The main evaluation metric is Forecasting
mAP (mAP F) [6], ADE, and FDE which are averaged over
static, and non-linearly moving cohorts. mAP F is the key

metric for the challenge, which defines a true positive when
there is a positive match in both the current timestamp T
and the future (final) at T + N time slot. ADE is an average
L2 distance between the best-forecasted trajectory and the
ground truth. FDE is an L2 distance between the endpoint
of the best-forecasted trajectory and the ground truth.

3.3. Implementation Details

Architecture details. In the LiDAR branch, the voxel size
of LiDAR encoder is (0.075m, 0.075m, 0.2m) and the point
clouds range is limited to [-54m, 54m] x [-54m, 54m] x
[-3m, 3m] to adapt the max range of E2E forecasting. In
LiDAR backbone, we down-sampled voxels to 1/8. For
the camera branch, we crop and resize camera images to
976x1440 to save GPU memory. we use the ResNet-101 as
a backbone and a 4-layer FPN as a neck to extract features
from multi-view cameras.
Training. We apply a 2-step training procedure. First, we
train the detector for 6 epochs. Then, we train the whole
end-to-end network to optimize the detector, tracker, and
motion head simultaneously for 20 epochs. We freeze the
LiDAR and image backbones in step 2 to save GPU mem-
ory.

The models are trained by AdamW optimizer, with a
learning rate of 2e-4, a weight decay of 0.01, and a total
batch size of 8 on 8 V100 GPUs. We use cosine annealing to
decay the learning rate. We applied CBGS (Class-balanced
Grouping and Sampling) [12] to get the expert model for
balanced data distribution.
TTA and Ensemble. For every model, we employ global
scaling with [0.95, 1, 1.05] and flipping with respect to the
xz-plane and yz-plane for TTA. We trained multiple mod-



els with three voxel sizes of [0.05m, 0.075m, 0.1m], with
or without CBGS augmentation and with or without cam-
era input. Totally we ensemble 8 models to generate final
results.

3.4. Final Results

We test our solution on 3 sub-challenges of Detection,
Tracking, and Forecasting in the E2E Forecasting track of
the Argoverse Challenge. Table 1 is the final leaderboard
of Forecasting and shows that our solution achieves 46.70
mAP F and ranks 1st place in Forecasting. Table 2 is the
final leaderboard of Tracking and shows that our solution
achieves 56.19 HOTA and ranks 1st place in Tracking. Table
3 is the final leaderboard of 3D Object Detection and shows
that our solution achieves 0.34 CDS and ranks 1st place in
Detection.

4. Conclusion
We devise a unified framework of detection, tracking,

and forecasting for Autonomous Driving. Our solution
ranks 1st place in Detection, Tracking, and Forecasting
of the E2E Forecasting track in Argoverse Challenges at
CVPR 2023 WAD.
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