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Abstract

Vision-language models (VLMs) like GroundingDINO ex-
cel in zero-shot object detection but struggle in domain-
specific tasks with limited data. We propose a multi-modal
few-shot fine-tuning framework to adapt GroundingDINO-
SwinL for the Roboflow-20VL dataset, one of 20 datasets
in the CVPR 2025 challenge. Our approach integrates dy-
namic data augmentation, feature consistency regulariza-
tion, a dynamic freezing mechanism, grid search optimiza-
tion, and inference enhancement with Test-Time Augmenta-
tion (TTA) and Weighted Boxes Fusion (WBF). Using 10-
shot multi-modal samples per class, we achieve a mean Av-
erage Precision (mAP) of 48.503, significantly outperform-
ing baselines. This framework offers robust generalization
in low-data settings, providing a scalable solution for di-
verse object detection tasks.

1. Introduction
Recent advances in Vision-Language Models (VLMs),
such as GroundingDINO [6], have enabled robust zero-
shot object detection across diverse benchmarks like MS-
COCO [5]. However, their generalization to specialized do-
mains, such as medical diagnostics or aerial surveillance,
is often limited by domain shifts and semantic ambiguities.
Traditional prompt engineering mitigates this by optimiz-
ing textual queries, but it overlooks the rich contextual cues
provided by visual examples. Inspired by human annota-
tion workflows, where annotators rely on multi-modal in-
structions (text descriptions and visual samples), we pro-
pose a few-shot learning framework to align VLMs with
target concepts using both modalities.

Our framework, depicted in Figure 1, combines a dy-
namic augmentation pipeline, feature consistency regular-
ization, a dynamic freezing mechanism, grid search opti-
mization, and inference optimization with TTA and WBF.
We achieve a better mAP of using 10-shot samples per class,
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Figure 1. Overview of our framework

surpassing baselines and approaching human-level accu-
racy in low-data settings. Our contributions are:

• A multi-modal few-shot learning framework that effec-
tively integrates text and visual cues for VLM adaptation.

• A dynamic augmentation pipeline with adaptive schedul-
ing and a feature consistency regularization technique to
enhance robustness in low-data regimes.

• A comprehensive optimization strategy combining dy-
namic freezing, grid search, and inference optimization
with TTA and WBF.

2. Related Work

2.1. Vision-Language Models (VLMs)

Vision-language models (VLMs) enable open-vocabulary
object detection by leveraging multimodal datasets pairing
images with text [11, 13–15], excelling in zero-shot sce-
narios. GroundingDINO [16] integrates text queries with
visual features for robust zero-shot performance on bench-
marks like MS-COCO [5], but struggles in specialized do-
mains (e.g., medical or aerial imagery) due to domain shifts,
requiring fine-tuning [1]. GLIP [4] reframes detection as
a grounding task, achieving strong supervised results, yet
faces challenges in niche domains. Our work adapts VLMs
like GroundingDINO for few-shot and cross-domain tasks,
addressing these limitations.
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2.2. Few-Shot Object Detection (FSOD)
Few-shot object detection (FSOD) adapts pretrained detec-
tors to novel classes with minimal data. Transfer-learning
methods like TFA [10] freeze the backbone and fine-tune
classification heads, offering efficient adaptation but as-
suming domain similarity, limiting cross-domain applica-
bility. Meta-learning approaches, such as Meta-RCNN [12],
learn class-agnostic prototypes via episodic training, but
their complexity hinders scalability. Our approach enhances
FSOD by integrating multimodal cues and domain-aware
fine-tuning to tackle data scarcity and domain variability.

2.3. Data Augmentation
Data augmentation bolsters model robustness in low-data
regimes like FSOD by expanding training datasets. Mo-
saic augmentation [3] merges images to introduce diverse
scales, while MixUp [2] blends images for smoother deci-
sion boundaries. Photometric adjustments (e.g., hue, satu-
ration) enhance cross-domain robustness. However, cross-
domain augmentation must preserve domain-specific fea-
tures. We develop a tailored pipeline to balance diversity
and domain fidelity for effective adaptation.

2.4. Test-Time Augmentation
Model ensembling boosts detection accuracy in few-shot
settings. Test-Time Augmentation (TTA) applies transfor-
mations like resizing and flipping to generate robust pre-
dictions. Weighted Boxes Fusion (WBF) [9] combines
bounding boxes by confidence scores, outperforming non-
maximum suppression. We use TTA and WBF to enhance
prediction accuracy and stability.

3. Method
Our framework, illustrated in Figure 1, fine-tunes
GroundingDINO-SwinL on the Roboflow-VL dataset using
a multi-modal few-shot approach. We integrate a dynamic
augmentation pipeline, a novel dynamic freezing mecha-
nism, grid search optimization, feature consistency regular-
ization, and WBF-based ensembling.

3.1. Multi-Modal Few-Shot Fine-Tuning
We use GroundingDINO with a Swin-L backbone,
pretrained on datasets including MS-COCO [5], Ob-
jects365 [8], and others. Fine-tuning leverages 10-shot
multi-modal examples (text and visual) per class from the
Roboflow-VL dataset. The BERT-based text encoder pro-
cesses textual prompts, while the Swin-L backbone extracts
visual features, enabling cross-modal alignment for target
concepts.

3.2. Dynamic Data Augmentation Pipeline
To enhance robustness and mitigate overfitting, we design a
dynamic augmentation pipeline with adaptive scheduling.

The pipeline randomly applies the following techniques
with probabilities adjusted dynamically based on training
progress:
• CachedMosaic (p=0.5, decaying to 0.3): Combines four

images to create diverse contexts, with reduced probabil-
ity in later epochs to stabilize training.

• YOLOXHSVRandomAug (p=0.5): Adjusts hue, satura-
tion, and value to simulate lighting variations.

• RandomFlip (p=0.5): Applies horizontal/vertical flips for
data diversity.

• CachedMixUp (p=0.3, increasing to 0.5): Blends images
and labels to encourage generalization, with increased
probability to promote robustness.

• RandomResize: Dynamically resizes images to handle
scale variations.

• RandomCrop: Simulates occlusions to improve robust-
ness to partial views.

We introduce an adaptive scheduling trick: augmentation
probabilities are adjusted using a cosine decay schedule to
reduce aggressive transformations in later epochs, balanc-
ing diversity and training stability. This is particularly ef-
fective in few-shot settings where overfitting is a concern.

3.3. Dynamic Freezing Mechanism
We implement a dynamic freezing mechanism to tailor pa-
rameter updates to the characteristics of the dataset, opti-
mizing fine-tuning for the volleyball action dataset. For
small-scale datasets, such as few-shot scenarios with lim-
ited annotations, we adopt a conservative strategy, freezing
the pretrained Swin-L backbone and fine-tuning only the
cross-modal transformer and the top language model layer
(e.g., layer 11) with a reduced learning rate to prevent over-
fitting. For large-scale datasets resembling the pretraining
domain, we unfreeze the final transformer layers (e.g., back-
bone stage 3) and apply a layer-wise learning rate decay
of 0.8 to balance adaptation with preservation of pretrained
features. For domain-specific datasets, such as the volley-
ball action dataset with significant visual and contextual dif-
ferences from natural images, we employ a more aggres-
sive approach, unfreezing the cross-modal transformer, fea-
ture enhancer, and additional backbone layers (e.g., stages
2 and 3) to enhance domain alignment. To ensure train-
ing stability, we incorporate a warm-up phase during the
first 150 iterations, gradually increasing the learning rate
for unfrozen layers to facilitate smooth convergence across
diverse dataset conditions.

3.4. Grid Search Optimization
To achieve optimal model performance, we implement a
systematic grid search across a curated set of configura-
tion files, each defining unique combinations of augmenta-
tion strategies, hyperparameters, and training settings. This
includes varying augmentation probabilities (e.g., Mosaic,
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MixUp), learning rates (from 10−4 to 5 × 10−6), and loss
weights (e.g., contrastive loss weights ranging from 0.5
to 2.0). We evaluate these configurations on a validation
set Dval, carefully sampled to mirror the test distribution
Ptest(x), ensuring robust generalization. The optimal con-
figuration θ∗ is selected by maximizing the mean Average
Precision (mAP) on Dval, formalized as:

θ∗ = argmax
θ∈Θ

mAP(Mθ,Dval). (1)

To prevent overfitting, we employ early stopping, halting
training if the validation mAP plateaus for ten consecutive
epochs. The best-performing model is then rigorously eval-
uated on the test set Dtest to confirm its efficacy, ensuring a
reliable and high-performing solution tailored to the target
task.

3.5. Inference Optimization with TTA and WBF
To enhance detection performance, we employ Test-Time
Augmentation (TTA) during inference, applying a diverse
set of transformations to generate robust predictions. Our
TTA pipeline includes multi-scale resizing (from 800×500
to 1600 × 1000), horizontal flipping, and photometric dis-
tortions (e.g., brightness and contrast adjustments), creat-
ing varied input representations that improve localization
accuracy and reduce false positives. This approach signif-
icantly boosts mean Average Precision (mAP) on datasets
with complex visual variations, such as the volleyball ac-
tion dataset. To further refine predictions, we train 10–15
models with varied hyperparameters, select the top four
based on validation mAP, and combine their outputs us-
ing Weighted Boxes Fusion (WBF) [9], which weights
bounding boxes by confidence scores. A sigmoid-based
confidence calibration mitigates overconfidence, enhancing
WBF’s effectiveness. By integrating TTA’s robust augmen-
tation with WBF’s precise aggregation, our inference strat-
egy ensures reliable and high-performing detection across
diverse scenarios.

4. Experiments
4.1. Dataset and Metrics
We evaluate on the Roboflow-VL dataset [7], which pro-
vides 10-shot multi-modal (text and visual) examples per
class for few-shot learning. Performance is measured using
mean Average Precision (mAP) across multiple IoU thresh-
olds (0.5:0.95), a standard metric for object detection.

We fine-tune GroundingDINO-SwinL, pretrained on
COCO, Objects365, and others, using PyTorch on 4090
GPU with a batch size of 2. The training pipeline, de-
rived from the provided configuration, includes Cached-
Mosaic (probability 0.6), YOLOXHSVRandomAug, Ran-
domFlip (probability 0.5), CachedMixUp (probability 0.3),
RandomResize (scales from 480x1333 to 800x1333), and

Algorithm 1 Multi-Modal Few-Shot Fine-Tuning with
GroundingDINO-SwinL

1: Initialization: Load GroundingDINO-SwinL pre-
trained on Dpre = {MS-COCO,Objects365, . . .}.

2: Augmentation Pipeline: Define A =
Arand({Mosaic,HSV,Flip,MixUp,Resize,Crop})
with cosine decay scheduling.

3: Regularization: Apply feature consistency regulariza-
tion LFCR with weight 0.1.

4: Dynamic Freezing: Unfreeze layers (e.g., cross-modal
transformer, backbone stages 2–3) based on dataset
scale and domain, with warm-up over first 150 itera-
tions.

5: Grid Search: Train models with Θ =
{lr, aug probs, loss weights} and select θ∗ by maximiz-
ing mAP on Dval.

6: Inference Optimization: Apply TTA with multi-scale
resizing, flipping, and photometric distortions; combine
top 4 model predictions using WBF with sigmoid-based
confidence calibration.

7: Evaluation: Evaluate optimized model on Dtest.

RandomCrop (384x600). We train for 2000 iterations with
an AdamW optimizer (learning rate 0.0001, weight de-
cay 0.05), applying a linear warm-up over 150 iterations
and a multi-step learning rate decay at iterations 1200
and 1600 (gamma 0.2). Feature consistency regularization
(FCR) is weighted at 0.1, and early stopping (patience=15)
halts training if validation mAP plateaus. Inference em-
ploys Test-Time Augmentation (TTA) with multi-scale re-
sizing (800x1333), flipping, and Weighted Boxes Fusion
(WBF) [9] for the top four models, selected by valida-
tion mAP. Grid search optimizes augmentation probabili-
ties, learning rates, and loss weights, with validation on a
subset mirroring the test distribution.

4.2. Detection Results
Table 1 evaluates our method against baselines on the
Roboflow-VL dataset under zero-shot and 10-shot set-
tings. Our ensemble approach with TTA achieves an
mAP of 48.503, significantly outperforming Ground-
ingDINO Swin-B (Finetuned, 30.214) and GLIP (Fine-
tuned, 38.633). Notably, the ensemble with TTA yields
a substantial improvement over individual models, includ-
ing MM-GroundingDINO Swin-B (46.914) and Swin-L
(47.921), demonstrating the effectiveness of our approach.

4.3. Visualization Results
Figure 2 visualizes 10-shot detection results on the
Roboflow-VL dataset. Our method accurately detects ob-
jects across diverse classes, with WBF ensembling reduc-
ing false positives compared to the single-model baseline.
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Method mAP (Zero-shot and 10-shot)

GroundingDINO (Zero-shot) 16.075
GroundingDINO Swin-B (Finetuned) 30.214
GLIP (Finetuned) 38.633
MM-GroundingDINO Swin-B (Finetuned) 46.914
MM-GroundingDINO Swin-L (Finetuned) 47.921
Ensemble + TTA 48.503

Table 1. Zero-shot and 10-shot detection results on the Roboflow-
VL dataset.

Figure 2. Visualization of 10-shot detection results on the
Roboflow-VL dataset.

The dynamic augmentation pipeline enhances robustness to
occlusions and scale variations.

5. Conclusion
We propose a multi-modal few-shot fine-tuning framework
for GroundingDINO-SwinL, achieving 48.503 of map on
the Roboflow-VL fewshot datasets. By integrating dy-
namic data augmentation, feature consistency regulariza-
tion, dynamic freezing, grid search optimization, and infer-
ence with TTA and WBF, our approach excels in low-data,
domain-specific detection. This framework offers a robust
solution for adapting VLMs to specialized tasks, with po-
tential for broader applications in real-world scenarios.
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