
Scenario Mining with LLMs

Xiaohong Zhang1, Yuanqi Li1, Xianfei Li2, Peng Pai2
1Nanjing University,2Cowa Robot

Abstract

The Argoverse 2 Scenario Mining Challenge at the CVPR
2025 Workshop on Autonomous Driving involves convert-
ing textual queries into executable scripts to filter safety-
critical scenarios from extensive driving logs. This report
details our 3rd-place solution, which centers on a compara-
tive analysis of leading Large Language Models (LLMs) for
this code generation task. We used a batch-prompting strat-
egy to efficiently process all scenario descriptions in a sin-
gle pass, leveraging the contextual understanding of models
like GPT-4o, Claude Sonnet 4, Gemini 2.5 Pro, and Grok.
Our findings show that Gemini 2.5 Pro delivered the highest
performance, achieving a HOTA-Temporal score of 52.09.
This work provides a direct comparison of foundation mod-
els on a practical, domain-specific code synthesis task and
demonstrates the viability of using off-the-shelf LLMs for
complex autonomous driving workflows.

1. Introduction

The development of safe and reliable autonomous vehicles
is contingent on rigorous testing and validation across a
wide spectrum of driving scenarios. Manually identifying
the full spectrum of driving scenarios is labor-intensive and
unscalable. The Argoverse 2 (AV2) Scenario Mining Chal-
lenge [7] addresses this by providing a benchmark to auto-
mate the discovery of scenarios based on natural language
descriptions. The core of the challenge is to translate a
human-readable query, such as “large truck blocking view
of a vehicle that is about to turn left", into a programmatic
script that can query a database of vehicle trajectory data.

This translation task is a perfect application for large lan-
guage models (LLMs) [1, 4–6], which have demonstrated
remarkable capabilities in understanding language and gen-
erating code. Our approach directly tackles this challenge
by using LLMs as code synthesizers. The goal is to gen-
erate a Python script that correctly utilizes a set of prede-
fined atomic functions (e.g., get_objects_of_category(),
is_turning()) to isolate the exact scenario described. Our
method relies on a comprehensive prompt that bundles the
function API, object categories, and few-shot examples, en-

Ego vehicle following
vehicle being crossed by
a jaywalking pedestrian.

in_front(vehicle) and
being_crossed_by(not
on_crosswalk(pedestrian))

Mined TracksAll Tracks

Description LLM Code

Execute Code
Filter Tracks

Figure 1. Scenario Mining Pipeline. Natural language descrip-
tions are fed into an LLM, which generates a Python script using a
predefined API. This script is then executed on the trajectory data
to extract the target scenarios.

abling batch code generation for all descriptions. By com-
paring the performance of GPT-4o, Claude Sonnet 4, Gem-
ini 2.5 Pro, and Grok3, we identify the most effective model
for this task and analyze the results. Our work provides
a direct empirical comparison of four leading foundation
models, quantifying their effectiveness on the AV scenario
mining task.

2. Methodology
Our solution is built upon the official competition base-
line [3], which already provides tracked object data from
Le3DE2E [2]. The overall pipeline of scenario mining is
illustrated in Fig. 1.

2.1. Problem Formulation
The task is to find specific scenarios within a large dataset of
driving logs. Each scenario is defined by a natural language
description, d. The competition provides a predefined li-
brary of atomic functions, F = {f1, f2, ..., fk}, which op-
erate on trajectory data. The goal is to generate a Python
script, s, for each description d. This script s must compose
functions from F to create a filter that, when executed, re-
turns the log and track IDs corresponding to scenarios that
match d. For example, for the description “passenger vehi-
cle turning left at intersection", the target script is shown in
Listing 1.

Table 1. Performance Comparation of different LLMs. Higher is better for all metrics. The best performance is highlighted in bold.

Model HOTA-Temp. HOTA-Track Timestamp BA Log BA

GPT-4o 39.19 42.14 69.39 64.43
Claude Sonnet 4 45.64 46.68 72.33 69.09
Grok 50.40 50.12 74.99 68.17
Gemini 2.5 Pro 52.09 50.24 76.12 66.52

1 description = "passenger vehicle
turning left at intersection"

2 subject =
get_objects_of_category(log_dir,
category='VEHICLE')

3 near_inter =
near_intersection(subject,
log_dir, threshold=12)

4 scenario_candidate =
turning(subject, log_dir,
direction='left')

5 scenario_final =
scenario_and([near_inter,
scenario_candidate])

6 output_scenario(scenario_final,
description, log_dir, output_dir)

Listing 1. Python code for vehicle turning scenario.

1 Please use the following functions to find
instances of a referred object in an
autonomous driving dataset. Be precise to
the description, try to avoid returning
false positives.

2 atomic functions:
3 {refav_context}
4 categories:
5 {av2_categories}
6 natural language descriptions:
7 {description_file}
8 Here is a list of examples:
9 {prediction_examples}

10 Output all the description and code pairs. Wrap
all code in one python block and do not
provide alternatives. Output code even if
the given functions are not expressive
enough to find the scenario.

Listing 2. Instruction for LLMs.

2.2. LLM-based Code Synthesis
We frame this problem as a direct code synthesis task for
an LLM. The model is prompted with all the necessary in-
formation to understand the task and generate the correct
code. This approach avoids complex intermediate represen-
tations or multi-agent systems, relying instead on the pow-
erful in-context learning and reasoning abilities of modern
foundation models.

To improve efficiency and leverage the LLM’s ability to
recognize patterns across the entire task set, we employed
a batch-prompting strategy. We aggregated all descriptions

into a single request. This approach has two main bene-
fits: it significantly reduces the costs of calling LLMs, and
it provides the model with a global view of the task distri-
bution, potentially improving consistency. The core instruc-
tion given to the LLM is shown in Listing 2.

3. Experiments and Results

3.1. Experimental Setup

Dataset and Metrics. We evaluated our method on the
AV2 Scenario Mining Challenge dataset. Performance is
measured using four official metrics: HOTA-Temporal,
HOTA-Track, Timestamp-level Binary Accuracy (Times-
tamp BA), and Log-level Binary Accuracy (Log BA).

Models. We conducted a comparative study of four
prominent LLMs:
• GPT-4o [1]
• Claude Sonnet 4 [4]
• Gemini 2.5 Pro [6]
• Grok3 [5]
For each model, we used the same batch prompt to generate
the full set of scenario mining scripts.

3.2. Results Analysis

The performance of the different LLMs is summarized
in Tab. 1. A clear performance hierarchy emerges from
the results. Gemini 2.5 Pro stands out as the top per-
former, achieving the highest scores on the primary HOTA-
Temporal metric (52.09) as well as HOTA-Track and Times-
tamp BA. Grok also delivers a strong performance, closely
trailing Gemini. Both models significantly outperform
Claude Sonnet 4 and GPT-4o on this specific task.

This suggests that the models’ capabilities in logical rea-
soning and adherence to complex, structured instructions
(like a programming API) vary considerably. The superior
performance of Gemini and Grok may be attributed to bet-
ter underlying reasoning engines or more extensive training
on code-related data. Based on these validation results, we
select the scripts generated by Gemini 2.5 Pro for our final
submission to the competition.

4. Conclusion
This report presents our 3rd-place solution to the AV2 Sce-
nario Mining Challenge. Our approach centered on using
Large Language Models to directly translate natural lan-
guage descriptions into executable scenario-finding scripts.
By conducting a comparative analysis of four leading foun-
dation models, we found that Gemini 2.5 Pro provided the
best performance for this domain-specific code generation
task. We validate the potential of leveraging off-the-shelf
LLMs to automate complex and critical workflows in the
autonomous driving industry.

References
[1] Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad,

Ilge Akkaya, Florencia Leoni Aleman, Diogo Almeida, Janko
Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4
technical report. arXiv preprint arXiv:2303.08774, 2023. 1, 2

[2] Feng Chen, Kanokphan Lertniphonphan, Yaqing Meng, Ling
Ding, Jun Xie, Kaer Huang, and Zhepeng Wang. Le3de2e so-
lution for av2 2024 unified detection, tracking, and forecasting
challenge. 1

[3] Cainan Davidson, Deva Ramanan, and Neehar Peri. Refav:
Towards planning-centric scenario mining. arXiv preprint
arXiv:2505.20981, 2025. 1

[4] Claude Team. Introducing claude 4.
https://www.anthropic.com/news/claude-4, 2024. 1, 2

[5] Grok Team. Grok. https://x.ai/grok, 2024. 2
[6] Gemini Team, Rohan Anil, Sebastian Borgeaud, Jean-Baptiste

Alayrac, Jiahui Yu, Radu Soricut, Johan Schalkwyk, An-
drew M Dai, Anja Hauth, Katie Millican, et al. Gemini: a
family of highly capable multimodal models. arXiv preprint
arXiv:2312.11805, 2023. 1, 2

[7] Benjamin Wilson, William Qi, Tanmay Agarwal, John Lam-
bert, Jagjeet Singh, Siddhesh Khandelwal, Bowen Pan, Rat-
nesh Kumar, Andrew Hartnett, Jhony Kaesemodel Pontes,
et al. Argoverse 2: Next generation datasets for self-driving
perception and forecasting. arXiv preprint arXiv:2301.00493,
2023. 1

	Introduction
	Methodology
	Problem Formulation
	LLM-based Code Synthesis

	Experiments and Results
	Experimental Setup
	Results Analysis

	Conclusion

